
AN ARCHITECTURE FOR OPEN-WORLD TEAM TASKS

Architectural Mechanisms for Handling Human Instructions in
Open-World Mixed-Initiative Team Tasks

Kartik Talamadupula† KRT@ASU.EDU

Gordon Briggs§ GORDON.BRIGGS@TUFTS.EDU

Matthias Scheutz§ MATTHIAS.SCHEUTZ@TUFTS.EDU

Subbarao Kambhampati† RAO@ASU.EDU
†Dept. of Computer Science & Engineering
Arizona State University, Tempe AZ USA
§HRI Laboratory
Tufts University, Medford MA USA

Abstract
Future envisioned mixed-initiative human-robot teams will require increasingly autonomous and
capable robotic team members who can interact with their human teammates in natural ways. The
challenge is to develop an integrated cognitive robotic architecture that will enable effective, natural
human-robot interactions. In this paper, we present recent work on our integrated robotic DIARC
architecture with its embedded Sapa Replan planner for open-world human-robot teaming tasks
(i.e., tasks where not everything is known about the task objects and objectives ahead of time).
We specifically focus on the required architectural mechanisms and capabilities for handling online
instructions with unspecified objects and describe the novel mechanisms implemented in DIARC
and Sapa Replan that enable online open-world tasking.

1. Introduction

Consider a typical Urban Search and Rescue (USAR) mission that involves

“[..] the location, rescue (extrication), and initial medical stabilization of victims trapped
in confined spaces [..] as it may be needed for a variety of emergencies or disasters, in-
cluding earthquakes, hurricanes, typhoons, storms and tornadoes, floods, dam failures,
technological accidents, terrorist activities, and hazardous materials releases.”1

In such a scenario, a team of searchers and rescuers is dispatched to “conduct physical search
and rescue in collapsed buildings” and “provide emergency medical care to trapped victims” (ibid.),
among others. Since USAR is considered a “multi-hazard discipline”, mixed-initiative human-
robot teams could significantly improve the effectiveness of such missions (by being able to search
spaces that are inaccessible to humans) while reducing the risk of human searchers getting trapped
themselves in collapsing buildings.

1. See http://www.fema.gov/urban-search-rescue.
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Currently employed tele-operated robots, however, are often not appropriate for such missions,
e.g., because operating them is not possible due to wireless connectivity problems or lack of accurate
sensory information, because the operation is too slow and ineffective given the urgency of the task,
or because the tele-operation locks in human resources that could be better used in other ways.
Hence, ultimately the goal is to use autonomous robots that complement human teammates and can
serve as genuine helpers in USAR missions (and beyond in other human-robot team tasks).

Building such autonomous robotic helpers, however, is a very difficult endeavor for many rea-
sons. Aside from all the mechanical and control problems that need to be resolved for robots to
be able to function properly in such environments, there is a critical feature of USAR missions,
common to many other human team tasks as well, that presents a major challenge to the cognitive
parts of robotic architectures: the open-endedness of the mission (i.e., the many aspects of the mis-
sion that are not known in advance including goals, tasks, and subtasks, locations of humans and
objects, building layouts, etc.). While humans are able to handle such open-ended missions by ne-
gotiating novel or unknown aspect in natural language, current cognitive robotic architecture are not
yet capable of dealing with the very same unknown and novel aspects in the same way as humans.
In part, the problem is that natural language capabilities are significantly lacking in current robots;
but equally important are novel architectural mechanisms that are required in other architectural
components such as the task planners or belief models as well for robots to be able to cope with all
that is entailed by the open-ended missions, as we will discuss in this paper. Specifically, we will
focus on two critical aspects of open-ended missions that cognitive robotic architectures will have to
handle: (A1) that not all goals, tasks and subtasks are known ahead of time, but new goals may be
assigned and new subtasks might get defined during task performance; and (A2) that not all infor-
mation about task-relevant entities is available ahead of time, but new knowledge about unknown
objects needs to be acquired during task performance (this includes knowledge about objects and
their appearance, locations, people, activities, and others).

The rest of the paper is structured as follows. We start by introducing a motivating USAR
example to illustrate both critical aspects (new goals and tasks, and new objects) in a human-robot
natural language dialogue interaction as part of a larger USAR mission. We then first focus on the
functional requirements of the natural language understanding system to be able to extract from the
dialogue novel goals and tasks as well as information about unknown objects. We then describe the
various additional architectural mechanisms and capabilities required for the robot to pursue the new
goals, carry out the next tasks, and handle the new objects. This includes detailed descriptions of
the requirements imposed on the task planner. In the discussion section, we address the challenges
ahead and conclude with our accomplishments to date and a brief outline of next steps for future
work.

2. Contributions

In this work, we focus our attention on the problems posed by incomplete specifications (Kamb-
hampati, 2007) and open worlds to the conduct of goal-directed, autonomous agents in the context
of dealing with new goal and task instructions that may arrive as the agent is executing in the real
world. It is important to note here that all human-robot teams are constituted in the service of spe-
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Architectural Component Necessary Extensions
Natural Language & Dialogue The natural language understanding mechanisms require the

ability to understand linguistic cues (such as modifiers that
convey uncertainty) that allow for the autonomous agent to rec-
ognize situations where closed-world reasoning is insufficient.
The natural language also needs to allow for NL generation
requests from other components that may seek to obtain infor-
mation through NL interaction with an interlocutor.

Belief Reasoner The belief reasoner needs to contain rules that allow the au-
tonomous agent to infer possible goals (for itself) from the goal
and belief states of other agents. Additionally, the belief rea-
soning component needs to be able to recognize and differenti-
ate between closed-world and open-world goals, such that the
appropriate goal submission process can be undertaken with
the Goal Management component.

Goal Manager The ability to represent and provide information about goals in
the open-world to the planner component.

Planner A representation to denote open-world information – and goals
associated with that information – needs to be devised. Sub-
sequent to this, the planner needs to use this information to
generate plans for both universally and existentially quantified
open-world goals.

Table 1. A table showing the extensions necessary to each component of the architecture.

cific goals – either at a higher, abstract level; or a lower, more defined level. It makes little sense
then to assume that these goals will remain static, or that they will all be specified up-front at the
beginning of each scenario. Instead, flexible frameworks are indeed required that are expressive
enough to denote most goals of interest, yet allow modifications (including addition and deletion)
to goals with relative ease. Additionally, since these goals all stem from humans, the representation
used by these goals must be on a level that humans are comfortable with – too high and no goals
of relevance can be defined; too low and humans will fast lose track of what the team is trying to
achieve. A similar constraint applies to the actions at the robotic agent’s disposal, as well as its
representation of the world. All of these must also be expressive enough representationally to be
sufficient for any real-world domain that they might be required in. In particular, the planner should
allow for actions with durations to handle goals with deadlines, given the reality that actions take
time to execute in the physical world; and partial satisfaction of goals should be possible to allow
the planner to “skip” seemingly unreachable goals.

Along with these, an important part of any online system is execution monitoring and replan-
ning to allow the robot to receive and react to new information from a human commander (e.g.,
a change in goal deadline). Robots operating in teaming scenarios require the ability to plan (and
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revise) a course of action in response to human instructions. To accept information from a human
commander, the robotic architecture parses and processes natural language (i.e., speech) into goals
or new facts. If the architecture cannot handle a goal or fact by following a simple script located in
its library, it calls the planner to find a method of achieving the goal.

On the planning side, while the state-of-the-art planning systems are very efficient, they focus
mostly on closed worlds. Specifically, they expect full knowledge of the initial state, and expect
up-front specification of the goals. Adapting them to handle open worlds presents many thorny
challenges. Assuming a closed-world up-front will not only necessitate frequent replanning during
execution, but can also lead to highly suboptimal plans in the presence of goals that are conditioned
on information that can be known only by sensing during execution. Acquiring full knowledge
up-front, on the other hand, would involve the robot doing a sensing sweep to learn everything
about its world before commencing the planning – an infeasible task, since a robot cannot be simply
commanded to “sense everything”, but rather has to be directed to specific sensing tasks. Accounting
for missing knowledge would involve making conditional plans to handle every type of contingency,
and letting the robot follow the branches of the plan that are consistent with the outcomes of its
sensing. Such full contingency planning is already known to be impractical in propositional worlds
with bounded indeterminacy (Meuleau & Smith, 2002); it is clearly infeasible in open worlds with
unknown numbers of objects, of (possibly) unknown types. In this paper, we demonstrate a first
step towards integrating a planner that can function in an open world with a robotic architecture that
can supply it with the information needed to make this problem solvable; and discuss the various
architectural components that need to be extended (see Table 1) in order to enable this.

3. A Motivating Example from an USAR Scenario

Consider a robot that is carrying out its assigned tasks during a larger USAR mission when a human
(H) contacts the robot (R) via a wireless audio transmitter:

H: Commander Z really needs a medical kit.

Now suppose that the robot did not know about Commander Z and consequently did not know
about Commander Z’s needs. And further assume that the robot also does not know what a medi-
cal kit is or what it looks like, and consequently does not know whether and where to find one. The
challenge then is to process the utterance in a way that achieves the following results:

1. the robot assumes that Z is the name of a commander and infers that Commander Z is a human
person (e.g., because it knows that all commanders are human)

2. it infers from the fact that the commander has a need to have something, that the commander
might also have a goal to have something (this is often true, but not always, just think of “the
need for a break”, which does not imply “the goal to have a break”)

3. it further infers that it might have to have the goal for the commander to have something
(based on the obligation that O∀x.G(h, have(x)) → G(R,G(h, have(x))) — here “O” de-
notes the standard deontic operator “obligatory” and “G(x,y)” indicates that x has goal y)
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4. it infers that Z’s need (and thus Z’s goal) is urgent (based on the use of “really” before
“needs”)

All the above inferences are possible without knowing what a medical kit is, based solely on
the general knowledge the robot has about human commanders, the probabilistic rule that needs of
people sometimes imply their goals, and the obligation that robots have to adopt goals of human
commanders; and natural language semantics in the case of the modifier “really”.

Note that it is not possible to infer anything about the medical kit: such as that it is a physical
object, that it can be picked up, that it contains medical equipment, etc. (just substitute “vacation”
for “medical kit” in the above sentence).

Fortunately for the robot, the human follows up right away with another sentence:

H: There should be one in the room at the end of the hallway.

After resolving the anaphora (namely “one” referring to “medical kit” ), the robot can now make
an important inference about the medical kit: it is a concrete physical object. Because even though
the robot might not know where the room at the end of the hallway is, the fact that it is a room and
that a medical kit should be inside the room is sufficient for the inference (note that it also uses the
principle that “should” implies “could”, which is all that is needed to establish the precondition for
being a physical object ∀x∃y.located(x, y)∧location(y)→ pobject(x).). Moreover, the robot can
infer probabilistically that the object can be carried because it is located inside a room (based on
the probabilistic common-sense knowledge that all things inside rooms can be carried). This allows
it to make the further inference that if it has the goal for Z to have it (G(R, have(Z,medkit))), it
should then likely also have the goal to get it and deliver it to Z (G(R, deliver(R,Z,medkit))).
This is based on a probabilistic “helping” principle that requires robots to bring items to humans
that they need:

∀robots(r), humans(h), pobjects(x).G(r, have(h, x))∧transportbl(x)→ G(r, deliver(r, h, x))

So at this point, the robot, using a mixture of non-probabilistic and probabilistic principles,
arrives at the conclusion that it might have to have a new delivery goal of a physical object of type
“medical kit” to Commander Z. Since the robot cannot be sure that it should have this goal (as
the probabilistic inference lowered its confidence in the validity of the conclusion), it is seeking
clarification from the human:

R: OK, should I get it for him?
H: Yes.

Now that the robot’s new goal has been confirmed, three new questions arise and have to be
answered before the robot is able to successfully complete the goal:

1. What does a medical kit look like? The answer to this question is essential for the robot to be
able search for it.
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2. Where is the room at the end of the hallway? This question does not necessarily have to be
answered by the human, as long as the robot can devise a strategy to find it given it is currently
located in a room that leads into the hallway (e.g., see (Williams et al., 2013) for a detailed
description of the required capabilities).

3. Where is Commander Z located? This question is also not of immediate importance, but will
have to be answered at some point (e.g., once the robot has found and retrieved a medical kit).

Hence, the robot both acknowledges the human confirmation and also follows up with a question
about the medkit’s appearance (note that appearance is all the robot requires to know about a medkit
as further questions about its purpose, etc. are not relevant to achieve the goal):

R: OK, I’ll get one for him.
R: What does it look like?
H: It is a white box with a red cross on it.

The robot has to trust that the verbal description provided by the human is sufficient to search
for medical kits. Hence, it configures its vision system based on that description, acknowledges
again the new information, and provides additional confirmation that it has accepted the goal and is
starting to pursue it right away.

This seemingly simple dialogue exchange demonstrating how both aspects (A1) and (A2) can
come up naturally in the context of open-world tasks, which turns out to be quite complex and com-
plicated in terms of the requirements it imposes on the robotic architecture. We will next describe
how the above functionality of the robot can be accomplished in an integrated cognitive robotic
architecture, for which we have used our DIARC architecture (Scheutz et al., 2013; Scheutz et al.,
2007). We will specifically focus on what it takes in terms of representational and functional capa-
bilities for the robot to be able to understand the above instructions and carry out the above dialogue,
and how it can configure various of its components in a way that allows it to successfully pursue
the goal (and eventually accomplish it if the environmental circumstances are right, i.e., there is
indeed a medkit in the room at the end of the hallway, the robot can determine the whereabouts of
Commander Z, etc.).

4. Open-World Instruction Understanding

The simple dialogue demonstrated several challenges that have to be addressed in a natural lan-
guage understanding (NLU) system as part of a robotic architecture to be able to handle open-
world instruction. Aside from the obvious challenges of having to cope with new words – out-of-
vocabulary recognition in the speech recognizer and estimating the part-of-speech-tag in the tagger
and/or parser – the NLU has to also deal with the lack of the semantic and pragmatic knowledge
when trying to make sense of utterances. In the first sentence “Commander Z really needs a med-
ical kit” the lexical items “Z”, “medical”, and “kit” are unknown, and so is their grammatical type
as there are multiple possibilities (e.g., “Z” could be a proper name or an adverb like “now”, and
“medical” and “kit” could both be multiple grammatical types, nouns, adjectives, adverbs, etc.).
Hence, based on the lexical ambiguities, it is impossible to guess a semantic type, left alone the
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Figure 1. A schematic that shows the architecture of the DIARC integrated system.

meaning. As discussed before, the assumption that “Z” is a name and that the words “medical kit”
denote an object, however, resolve only some of the problems, because the robot needs to be able
to extract the implicit order expressed in the sentence “Get Commander Z a medical kit”, it needs
to turn this into goal expressions that the task planner can handle. The tricky part here is that the
planner does not know about medical kits (as objects) and that even if it did know about medical
kits, it would not know where to find one. A simple “G(have(Z,medkit)” is not appropriate be-
cause “medkit” does not denote an object, but a type. Pulling out the type and quantifying it as in
“G(∃x.have(Z, x) ∧medkit(x)).” does not work either because the type is unknown and because
the goal is not that there “be a medkit such that Z has it”, but that Z has one of that kind. It should be
clear that a straightforward way of translating this into a two-place goal expression will not succeed.
Moreover, understanding the next sentence and connecting it to the previous sentence is also critical:
“There should be one in the room at the end of the hallway”. The fact that “should be” is used instead
of “is” is important for building the appropriate semantic representation: in the case of “is” it would
be easy to assert a fact “∃medkit(x)located−in(x, room−at−the−end−of−the−hallway)”.
However, “should” indicates that the assertion is not certain. Hence, forming a goal to get one from
the room is not the right way to interpret this information, which has a more conditional flavor and
would in conjunction with the first sentence yield something like this: “if there is a medkit in the
room at the end of the hallway, then get it and bring it to commander Z”. By viewing what is meant
by the two sentences as some sort of conditional goals, it seems more plausible that the planner
could make sense of such a goal and generate a sequence of actions that would accomplish it: first
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go to the room at the end of the hallway, to then look for the medical kit in the room, and if one is
found, to pick it up and bring it to Commander Z.

4.1 Dialogue Reasoning

Within DIARC, goals are generated from various components and submitted to the Goal Manager
component to be executed (Schermerhorn & Scheutz, 2010). Goals prompted by natural language
interactions are first generated within the Belief component based on belief updates received from
the natural language system, and then forwarded to the Goal Manager component. Goals are rep-
resented within the Belief component as predicates of the form goal(α, φ, P ), where α denotes the
agent , φ represents the state α wants to obtain (or the action α wants performed), and P denotes
the urgency of the goal. Below we describe in greater detail how the process of obtaining this in-
formation with the natural language understanding system occurs, and how this information is then
utilized to generate a goal for the robotic system.

In the scenario presented in Section 3, the robot receives information, via natural language in-
put from CX , regarding a goal another agent (CZ) has. The flow of information within the robotic
architecture that originates from speech input is captured in the architecture diagram found in Fig-
ure 1. First the speech recognition component generates the text of the heard utterance, which is
then forwarded to the natural language processing component. Parsing and initial semantic analysis
is then performed on this received text data. The resulting surface semantics are then forwarded to
the dialogue component for pragmatic analysis, which is described below.

Within the dialogue component a series of pragmatic rules provide a means of translating be-
tween surface semantics understood by the natural language processing component and the belief
updates sent to the belief component. A pragmatic rule in the dialogue component takes the form:

[[UtteranceType(α, β, φ,M)]]C := ψ1 ∧ ... ∧ ψn

where the UtteranceType denotes (e.g. instruction, statement, acknowledgment), α denotes
the speaker, β denotes the listening agent, φ denotes the surface semantics of the utterance, M
denotes a set of sentential modifiers, and the set of predicates ψ1 ∧ ... ∧ ψn denote the inferred
meaning of the utterance. The ability to model sentential modifiers has been used previously to
understand the belief model implications of certain adverbial modifiers such as “still” and “now”
(Briggs & Scheutz, 2011). Finally, the [[]]C notation denotes the dialogue and belief context that
must apply for this interpretation to be made.

For the the statement, “Commander Z needs a medical kit,” the following pragmatic rule would
apply:

Stmt(α, β, needs(γ,X), {}) := want(α, bel(β, goal(γ, have(γ,X), normal)))

Meaning that the robot would infer that agent α wants the listener β to believe agent γ has a
goal with default urgency to have object X . We are omitting the [[]]C notation here as this rule will
apply in general. The modifier notation introduced previous can also be utilized to infer information
about goal urgency. For instance, what if the robot heard, “Commander Z really needs the medical
kit”? This should indicate increased urgency, which can be represented in a new pragmatic rule:

Stmt(α, β, needs(γ,X), {really}) := want(α, bel(β, goal(γ, have(γ,X), high)))
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While the belief update generated by this rule helps the robot maintain a mental model of CX ,
a few reasoning steps must occur within the belief component before this information generates a
goal for the robot. These rules are described in the subsequent section.

4.2 Belief Reasoning

Having recently received the belief update want(cmdrX, bel(self, goal(cmdrZ,
have(cmdrZ,medkit), high))), various inferences are made in the belief component. To adopt
beliefs based on communicated facts, have a simple, naive rule that encodes a credulous belief
adoption policy:

want(α, bel(self,X))⇒ bel(self,X)

At this point, the belief bel(self, goal(cmdrZ, have(cmdrZ,medkit), high)) is supported.
The belief component also contains basic rules that reason about social roles and possible obliga-
tions. Some of these rules that are utilized in the scenario are described below:

commander(α) ∧ crewman(β)⇒ outranks(α, β)

This rule represents the superior / subordinate relationship between a commander (such as CX

and CZ) and someone of rank “crewman,” such as our robot.

outranks(α, β) ∧ bel(β, goal(α, φ, P ))⇒ itk(β, goal(β, φ, P ))

The above inference rule encodes the notion that if an agent β believes that a superior has a
goal for φ to obtain, that it should have an intention-to-know (itk) whether it should also adopt
that goal. Because the robot has the necessary rank knowledge (i.e. commander(cmdrZ) ∧
crewman(self)), this rule fires, generating the intention-to-know whether or not it should help
Commander Z get a medical kit. The intention-to-know predicate generates a clarification question
toward CX , “Ok, should I get it for Commander Z?”

The response by CX , “Yes.” triggers a contextually dependent dialogue rule that confirms the
content of the itk predicate. As such, goal(self, have(cmdrZ,medkit), high), is supported. Or-
dinarily, this newly asserted goal predicate is then submitted to the Goal Manager component. How-
ever, due to the uncertain state of a key object in this potential goal, specifically the fact that the
medical kit “should be” at the current room (should(at(medkit, current − room))), this goal is
not treated a a regular goal. Instead, the belief component submits this goal as a special type of goal
known as an open world quantified goal, which is described in the following section.

5. Open-World Planning

In order to parse and act upon information and goals that are conditional in nature, as mentioned
in the previous section (“if there is a medkit in the room at the end of the hallway, then get it
and bring it to commander Z”), it will not do for the the planning system in use to simply assume a
closed world (Etzioni, Golden, & Weld, 1997) with respect to unknown information (an assumption,
unfortunately, that most state-of-the-art planners make). What is needed instead is both a framework
for specifying conditional knowledge and rewards, and an approach for using that knowledge to

9



K. TALAMADUPULA, G. BRIGGS, M. SCHEUTZ AND S. KAMBHAMPATI

direct the robot in such a way as to intelligently trade sensing costs and goal rewards. Accordingly,
we use an approach for representing and handling a class of goals called open world quantified
goals (OWQGs), which provide a compact way of specifying conditional reward opportunities over
an “open” set of objects.

5.1 Open World Quantified Goals

Open world quantified goals (OWQGs) (Talamadupula et al., 2010a) combine information about ob-
jects that may be discovered during execution with goals that are contingent on the discovery of
those objects. The human member of a human- robot team can use an OWQG to provide details
about what new objects may be encountered through sensing, and include goals that relate directly
to those sensed objects. Newly discovered objects may enable the achievement of goals, granting
the opportunity to pursue reward. For example, detecting a medical kit (medkit) in a room will
allow the robot to pick up that medkit and deliver it to another location (where picking it up accrues
reward). Given that the reward in this case is for each medkit picked up, there exists a quantified
goal that must be allowed partial satisfaction. In other words, the universal base, or total grounding
of the quantified goal on the real world, may remain unsatisfied while its component terms may be
satisfied. To handle this, we rely on the partial satisfaction capability (Van Den Briel et al., 2004)
of the base planner, Sapa Replan (Cushing, Benton, & Kambhampati, 2008).

As an example, we present an illustration from the USAR scenario outlined in Section 3: the
robot is directed to pick up a medkit from the room at the end of the hallway and deliver it to
Commander Z. This goal can be classified as open world, since it references objects that do not
exist yet in the planner’s object database. It is also quantified – however, the nature of this quantifi-
cation exposes an interesting difference, which we now discuss.

5.1.1 Universally Quantified Goals

The first kind of OWQG is one where the goal is quantified universally (Golden, Etzioni, & Weld,
1994); that is, it is quantified over all possible instances of a particular object type. To illustrate,
consider the following directive from the commander to the robot:

“Medical kits can be found inside rooms. They are white in color
with a red cross on them. Find all medical kits.”

This goal can be written formally as an OWQG in the following syntax:

1 (:open
2 (forall ?r - room
3 (sense ?mk - medkit
4 (lookedfor ?mk ?r)
5 (and (hascolor ?mk white)
6 (hassymbol ?mk redcross))
7 (:goal (found ?mk ?r)
8 [100] - soft))))
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The above goal can be interpreted as follows: line 2 denotes the variable that the goal is quantified
over – in this case, over all objects of type room. Line 3 contains the object type that the robot
must sense for; this is the run-time discovery that gives the world its open nature. Line 4 is a
closure condition predicate that informs that planner that a sensing action has been performed, thus
stopping repeated sensing. Lines 5 and 6 list the properties that will hold for the object that is
sensed, where these properties are generated from information provided via the dialogue rules in
Section 4. Finally, Line 7 stands for the goal over such an object, while line 8 indicates that there is
a reward of 100 units associated with fulfilling that goal, and that the goal is soft (that is, it must be
seen as an opportunity, and need not necessarily be fulfilled).

5.1.2 Existentially Quantified Goals

In contrast to universally quantified goals, there may exist goals that depend on objects that are not
yet known, but of which there exists only a single instance. Consider the following utterance by a
commander:

“Commander Z needs a medical kit. There is one in the room at the
end of the hallway.”

This goal is fundamentally different from the goal presented in Section 5.1.1; in this instance, the
commander is specifying that there is exactly one medical kit for the robot to locate and transport to
Commander Z. Even though this is still an open world goal – given that the planner does not know
about this object until it discovers it at runtime – the planner does not need to look into all rooms to
find the medical kit. This observations leads to a simple idea that can be used to model existentially
quantified open world goals using the same construct as in the previous section – we merely restrict
the type of the variable that the goal is quantified over. We are then left with the following OWQG:

1 (:open
2 (forall ?r - endroom
3 (sense ?mk - medkit
4 (lookedfor ?mk ?r)
5 (and (hascolor ?mk white)
6 (hassymbol ?mk redcross))
7 (:goal (found ?mk ?r)
8 [100] - soft))))

The only difference between this goal, and the one specified previously, occurs in line 2 – the
existentially quantified goal is compiled into a universally quantified one by restricting the variable
that quantification occurs over from type room to the narrower endroom sub-type. To be sure,
this is but an approximation that enables the planner to handle existentially quantified goals in the
same manner as universally quantified ones, and depends on the assumption that there will only be
one object (constant) of type endroom; we are currently working on a more principled approach
to handle this instead.
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5.2 Implementation

While walking through the human-robot interaction in Section 4.2, we left off after the human
operator instructed the robot to get a medical kit for Commander Z, but before the goal had been
submitted from the Belief component to the Goal Manager component as an OWQG. In this section
we will first describe how OWQGs are submitted to the Goal Manager and then communicated to the
planner, then we discuss how the planner works with OWQGs.

5.2.1 Goal Submission and Management

As mentioned previously, if in the usual case a goal predicate of form goal(self,X, P ) is supported
in the belief component, it would be submitted as a regular goal to the goal manager. However,
certain rules within belief trigger treating goals as OWQGs. For instance, we have an inference rule:

goal(α, have(β,X), P ) ∧ should(at(X,L))⇒ OWQG(α, have(β,X), P )

meaning that if the location of the object X is uncertain, the goal should be treated as an OWQG.
The goal submission mechanism checks whether or not the OWQG predicate is supported. If not, a
goal is submitted as a normal goal. Otherwise, the OWQG submission process begins. This involves
supplying the Goal Manager with information about what variables are to be considered open and
what sensory information (and hence what sensory actions) can be taken to make inferences about
the state of these open variables.

In the case of our scenario, the location of the medical kit is not known for certain. Therefore,
the following rule is used to denote L as the open variable associated with the OWQG to obtain the
medical kit for Commander Z:

goal(α, have(β,X), P ) ∧ should(at(X,L)) ⇒ OWQG_openvar(OWQG(α, have(β,X), P ), L)

Likewise, similar rules specifying the object to be sensed for is the object X . The information
inferred by these rules is then submitted with the OWQG to the Goal Manager, which attempts to
submit the OWQG to the planner. However, in our scenario, there is still a problem left: how can the
robot act on a goal to look out for the medkit without knowing what it looks like? The robot begins
the scenario without a visual description of objects of the medical kit type. Somehow the knowledge
of what the medkit looks like needs to be included in the sensing action that the robot has to perform.
The Goal Manager detects that it lacks a visual descriptor for the sense variable type, and formulates
a request for clarification (specifically a request for a visual description). This request is submitted
to the dialogue component, which initiates the natural language generation process, resulting in the
query, “What does it look like?” This produces feedback from the human interactant, who supplies
the visual description. With the requisite information available, the Goal Manager then submits the
OWQG to the planner.

5.2.2 Planner

To handle open world quantified goals, the planner grounds the problem into the closed-world using
a process similar to Skolemization. More specifically, we generate runtime objects (from the sensed
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variable – in this case, medkit) that explicitly represent the potential existence of an object to be
sensed. These objects are marked as system generated runtime objects. The runtime objects are
then added to the problem and ground into the closure condition. The facts generated by following
this process are included in the set of facts in the problem through the problem update process.
The goals generated on runtime objects are similarly added. This process is repeated for every new
object that the process may instantiate in the case of universally quantified OWQGs.

We treat the closure condition optimistically, meaning a particular state of the world is consid-
ered closed once the ground closure condition is true. On every update coming in to the planner
from the world (via the architecture), the ground closure conditions are checked, and if true the
runtime objects and goals instantiated on them are removed from the problem. By planning over
this representation, we provide a plan that is executable given the planning system’s current repre-
sentation of the world until new information can be discovered (via a sensing action returning the
closure condition). The idea is that the system is interleaving planning and execution in a manner
that moves the robot towards rewarding goals by generating an optimistic view of the true state of
the world.

As an example, consider the scenario at hand and its open world quantified goal. When the robot
finds a room at the end of the hallway (an object with name er1, of type endroom, as it were), the
planner generates a runtime object medkit!1. Subsequently, the facts (hascolor medkit!1
white) and (hassymbol medkit!1 redcross), along with the goal (found medkit!1
er1) (with accompanying reward 100) would be generated and added to the problem2. A closure
condition (lookedfor medkit!1 er1) would also be created. When the planner receives an
update from the world that includes this condition as one of the true facts, it will update its repre-
sentation of the problem by deleting the two facts related to the runtime object, and the goal. The
planner only outputs a plan up to (and including) an action that will make the closure condition true
(a sensing action) – once the condition becomes true, the runtime object (and facts) are no longer
needed, since the truth values in the real world are known. This process, of resolving the uncertainty
in a dynamic world with a combination of sensing and replanning when there are updates, is very
reminiscent of the planner FF-Replan (Yoon, Fern, & Givan, 2007).

6. Evaluation

In order to evaluate the representational and architectural extensions implemented on the integrated
DIARC architecture in this work, we ran the robot controlled by this architecture on an urban search
and rescue (USAR) task. Specifically, our robot was put in a scenario where it had to listen for and
understand natural language instructions from a human teammate. In this case, the human-robot
dialog was as follows:

“H: Cindy, Commander Z really needs a medical kit. There should be one in
the room you are in.”
“R: Okay. Understood. The commander really needs a medkit. Should I get
one for him?”
“H: Yes. He is in the room with the green door.”

2. The exclamation mark indicates a runtime object.
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“R: Okay. I will get one for him.”
“R: What does it look like?"
“H: It is a white box with a red cross on it.”
“R: Okay.”

From the above exchange, the robot needs to understand that since Commander Z needs a
medical kit, there is a goal on delivering that medkit to the commander. The robot also engages
the human in further conversation, in order to ascertain the details of both where the commander is,
as well as where the medkit may be, and what the medkit looks like. This information is used
to inform the OWQG that is eventually used in the planning process (“white box with a red cross”).
Finally, the robot issues a verbal confirmation to the teammate that it is now engaged in the task.

For a full video of this interaction in real time, please see the following: http://www.
youtube.com/watch?v=RJ1VSIi1CM4.

7. Future Work

While the cognitive mechanisms described in this paper have enabled us to perform a useful human-
robot team interaction, there is ample opportunity to extend and improve these mechanisms to fa-
cilitating even more complex and natural human-robot teaming behavior. Two of these potential
extensions are described below.

7.1 Mental Modeling and Planning Extensions

Teaming scenarios will also require the prediction of teammate behavior based on knowledge of
their beliefs and goals. This requires the ability to maintain accurate mental models of interaction
partners (Scheutz, 2013). Some of the mechanisms utilized to achieve this capability have been
described previously in this paper, though more are necessary to achieve human-like performance.
We are currently working toward integrating the belief component and planner directly, in order to
use the planner as a mechanism by which to predict the behavior of a human teammate. This will be
accomplished by instantiating a planner problem from the perspective of the teammate and deriving
an expected plan.

7.2 Reasoning With Uncertainty

Belief and dialogue reasoning is presently performed with classical logical representations. While
this is sufficient to enable the intelligent behaviors described in this paper, more robust behavior
from the robot may require probabilistic belief representation and reasoning. We have begun to
analyze a similar interaction scenario in terms of a Dempster-Shafer (DS) theory inference system
(Nunez et al., 2013). DS based reasoning can also be used to reason about the the credibility of
information sources (Wickramarathne, Premaratne, & Murthi, 2012). This ability could be useful
in developing a more sophisticated belief adoption policy that factors in the trust the robot has in
a speaker. Instead of a naive (highly credulous) adoption rule, a rule that factors in basic model of
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trust or reliability can be obtained:

want(α, bel(β, φ))[a1,b1] ∧ trusts(β, α)[a2,b2] ⇒[a3,b3] bel(β, φ)[a4,b4]

That is to say, the degree to which an agent β believes a communicated proposition φ is de-
pendent on the degree to which β believes that agent α wants him or her to believe φ, the degree
to which β trusts α, and the degree to which an inter-agent communication can be used to make
inferences. Currently, we are working on integrating the DS reasoning mechanisms as described
in (Nunez et al., 2013) with the natural language and belief modeling components to enable such
capabilities.

8. Conclusion

In this paper, we have discussed the important problem of open-endedness in tasks like Urban
Search and Rescue, which poses significant problems for cognitive-robotic architectures. We dis-
cussed specifically the challenges of coping with new goal and task instructions that make reference
to unknown objects where neither object type nor the location of the object is known. We then
discussed how various components in the DIARC architecture work together to generate the in-
ferences that drive the dialogue to gather more information where necessary and to generate goal
representations, in particular, “open world quantified goals”, that overcome the past difficulties of
task planners to express and plan with goals that make reference to unknown objects.

In a next step of the architecture development – to improve the architecture’s open-world capa-
bilities – we are currently working on making the probabilistic nature of some of the representations,
as well as the confidence the robot has in its interpretations, more explicit. This will allow the robot
to make better, more robust inferences in cases of ambiguity and severe lack of knowledge. We are
also adding mental modeling capabilities that will allow the robot to keep track of the mental states
of its teammates, which should allow it to better understand human commands and infer unknown
facts and activities that humans might presume the robot already knows.
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