
A Theory of Intra-Agent Replanning

Kartik Talamadupula† and David E. Smith§ and William Cushing† and Subbarao Kambhampati†

†Dept. of Computer Science and Eng.
Arizona State University

Tempe, AZ 85287
{krt,rao}@ asu.edu, william.cushing @ gmail.com

§NASA Ames Research Center
Moffet Field
CA 94035

david.smith @ nasa.gov

Abstract

When autonomous agents execute in the real world, the world
state as well as the objectives may change from the agent’s
original conception of those things. In such cases, the agent’s
planning process must modify the existing plan to make it
amenable to the new conditions, and to resume execution.
The need for inter-agent replanning, in terms of commitments
to other agents, is understood in the multi-agent systems com-
munity. Such inter-agent replanning also motivates an intra-
agent replanning problem for each individual agent. How-
ever, the single-agent planning community has mostly limited
its view of replanning to reducing the computational effort in-
volved, by minimally perturbing the current plan structure to
replan. This is not very appropriate as a general model for
intra-agent replanning, which may consist of various tech-
niques that are employed according to the scenario at hand.
In this paper, we present a general replanning problem that is
built on various types of replanning constraints. We show that
these constraints can model different types of replanning, in-
cluding the similarity-based approaches used in the past and
sensitivity to commitments made to other agents. Finally, we
show that partial satisfaction planning provides a good sub-
strate for modeling this general replanning problem.

1 Introduction
Many tasks require handling dynamic objectives and en-
vironments. Such tasks are characterized by the presence
of highly complex, incomplete, and sometimes inaccurate
specifications of the world state, the problem objectives and
even the model of the domain dynamics. These discrepan-
cies may come up due to factors like plan executives or other
agents that are executing their own plans in the world. Due
to this divergence, even the most sophisticated planning al-
gorithms will eventually fail unless they offer some kind of
support for replanning. These dynamic scenarios are non-
trivial to handle even when planning for a single agent, but
the introduction of multiple agents – automated or otherwise
– introduces further complications. All these agents neces-
sarily operate in the same world, and the decisions made
and actions taken by an agent may change that world for all
the other agents as well. Moreover, the various agents’ pub-
lished plans may introduce commitments between them, due
to shared resources, goals or circumstances. The need for
inter-agent replanning in terms of these commitments is un-
derstood in the multi-agent systems (MAS) community (c.f.
Section 2). However, these inter-agent commitments may

evolve as the world itself changes, and may in turn affect a
single agent’s internal planning process.

Given the importance of replanning in dealing with all
these issues, one might assume that the single-agent plan-
ning community has studied the issues involved in depth.
This is particularly important given the difference between
agency and execution, and the real-world effectors of those
faculties: a single agent need not necessarily limit itself to
planning just for itself, but can generate plans that are car-
ried out by multiple executors in the world. Unfortunately,
most previous work in the single-agent planning community
has looked upon replanning as a technique whose goal is to
reduce the computational effort required in coming up with
a new plan, given changes to the world. The focus in such
work is to use the technique of minimally perturbing the cur-
rent plan structure as a solution to the replanning problem.
However, neither reducing replanning computation nor fo-
cusing on minimal perturbation are appropriate techniques
for intra-agent replanning in the context of multi-agent sce-
narios.

In this work, we argue for a better, more general, model
of the replanning problem. This model considers the central
components of a planning problem – the initial state, the set
of goals to be achieved, and the plan that does that, along
with constraints imposed by the execution of that plan in the
world – in creating the new replan. These replanning con-
straints take the form of commitments for an agent, either to
an earlier plan and its constituent actions, or to other agents
in its world. We will show that this general commitment sen-
sitive planning architecture subsumes past replanning tech-
niques that are only interested in minimal perturbation – the
“commitment” in such cases is to the structure of the previ-
ously executing plan. We will also show that partial satis-
faction planning (PSP) techniques provide a good substrate
for this general model of replanning.

In the next section, we discuss some prior and related
work from the multi-agent systems (MAS) and single-agent
planning communities in order to motivate our work. We
then present our formulation of the replanning problem in
terms of the problem instance (composed of the initial state
and the goals), the plan to solve that particular instance, and
the dependencies or constraints that are introduced into the
world by that plan, and three models associated with the han-
dling of these replanning constraints that are defined in that
formulation. Subsequently, we delve deeper into the compo-

sition of those constraints, and discuss the various solution
techniques that can be used to satisfy these constraints while
synthesizing a new replan. We then describe our experimen-
tal setup and present our results.

2 Related Work
Replanning has been an early and integral part of automated
planning and problem solving work in AI. The STRIPS
robot problem-solving system (Fikes, Hart, and Nilsson
1972), one of the earliest applications of planning and AI,
used an execution monitoring system known as PLANEX
to recognize plan failures in the world, and replan if direct
re-execution was not an option. The replanning mechanism
worked by sending the change in state back to the STRIPS
system, which returned a sequence of actions that brought
the state back to one from which the execution of the orig-
inal plan could be resumed. This relatively simple proce-
dure encoded the idea that would come to dominate replan-
ning work within the planning community for the next few
decades – the notion of commitment to a plan. The prin-
ciple underlying the concept of minimally changing an ex-
isting plan is christened plan stability by Fox et al. (Fox et
al. 2006). In that work, two approaches – replanning from
scratch, and repairing the existing plan – and their respec-
tive impacts on plan stability are considered. Stability it-
self is defined as the measure of the difference a process
induces between an original plan and a new plan, and is
closely related to the idea of minimal perturbation plan-
ning (Kambhampati 1990) used in past replanning and plan
re-use (Nebel and Koehler 1995) work. Fox et al. argue that
plan stability as a property is desirable both from the stand-
point of measurable quantities like plan generation time and
plan quality, as well as intangibles like the cognitive load on
human observers of planned activity and the strain on the
plan executive.

Other work on replanning has taken a strong stand either
for or against the idea of plan repair. Van Der Krogt et al.
(Van Der Krogt and De Weerdt 2005) fall firmly into the
former category, as they outline a way to extend state-of-
the-art planning techniques to accommodate plan repair. For
the purposes of this paper, it suffices to note that this work
looks at the replanning problem as one of commitment to
and maintenance of a broken plan. This work has a strong
parallel (and precursor) in planning for autonomous space
exploration vehicles, a proven real world application of plan-
ning technology. The Casper system (Knight et al. 2001),
which was designed to autonomously control a spacecraft
and its activities, was designed as a system with a high level
of responsiveness, enabled through a technique called itera-
tive repair – an approach that fixes flaws in an existing plan
repeatedly until an acceptable plan is found. At the other
end of the spectrum, Fritz et al. (Fritz and McIlraith 2007)
deal with changes to the state of the world by replanning
from scratch. Their approach provides execution monitor-
ing capabilities by formalizing notions of plan validity and
optimality using the situation calculus; prior to execution,
each step in the (optimal) plan is annotated with conditions
that are sufficient for the plan’s optimality to hold. When a
discrepancy or unexpected change occurs during execution,
these conditions are re-evaluated in order to determine the
optimality of the executing plan. When one of the condi-

tions is violated, the proposed solution is to come up with a
completely new plan that satisfies the optimality (or validity)
conditions.

In contrast, the MAS community has looked at replanning
issues more in terms of multiple agents and the conflicts
that can arise between these agents when they are execut-
ing in the same dynamic world. Wagner et al. (Wagner et al.
1999) proposed the twin ideas of inter-agent and intra-agent
conflict resolution. In the former, agents exchange commit-
ments between each other in order to do team work. These
commitments in turn may affect an agent’s local controller,
and the feasibility of the agent’s individual plan – this brings
up the process of intra-agent conflict resolution. Inter-
agent commitments have been variously formalized in dif-
ferent work in the MAS community (Komenda et al. 2008;
Bartold and Durfee 2003; Wooldridge 2000), but the fo-
cus has always been on the interactions between the various
agents, and how changes to the world affect the declared
commitments. The impact that these changes have within
an agent’s internal planning process has not received signif-
icant study. The closest work in the multi-agent planning
community to ours is by (Komenda, Novák, and Pěchouček
2012), where the multi-agent plan repair problem is intro-
duced and reduced to the multi-agent planning problem;
and (Meneguzzi, Telang, and Singh 2013), where a first-
order representation and reasoning technique for modeling
commitments is introduced.

In this work, we propose to bring these two approaches
from two different communities – single-agent planning,
and multi-agent systems – together in a unified theory of
agent replanning. Our central argument is that it should
be the single-agent planning community’s brief to heed the
changes to the world state and inter-agent commitments, and
to generate a new (single-agent) plan that remains consistent
with the larger multi-agent commitments in the world. The
first step in this endeavor is to re-define the replanning prob-
lem such that both single and multi-agent commitments can
be represented under a unified framework.

3 The Replanning Problem
We posit that replanning should be viewed not as a tech-
nique, but as a problem in its own right – one that is distinct
from the classical planning problem. Formally, this idea can
be stated as follows. Consider a plan ΠP that is synthesized
in order to solve the planning problem P = 〈I,G〉, where
I is the initial state and G, the goal description. The world
then changes such that we now have to solve the problem
P ′ = 〈I ′, G′〉, where I ′ represents the changed state of the
world, andG′ a changed set of goals (possibly different from
G). We then define the replanning problem as one of find-
ing a new plan Π′

P that solves the problem P ′ subject to a
set of constraints ψΠP . This model is depicted in Figure 1.
The composition of the constraint set ψΠP , and the way it
is handled, can be described in terms of specific models of
this newly formulated replanning problem. Here, we present
three such models based on the manner in which the set ψΠP

is populated.

1. M1 | Replanning as Restart: This model treats replan-
ning as ‘planning from restart’ – i.e., given changes in the
world P = 〈I,G〉 → P ′ = 〈I ′, G′〉, the old plan ΠP is

completely abandoned in favor of a new plan Π′
P which

solves P ′. Thus the previous plan induces no constraints
that must be respected, meaning that the set ψΠP is empty.

PLANNER
<I, G>

PLAN

Present for
Assessment

CONSTRAINT
PROCESSING

W
O

R
LD

 Publicize to
Other Agents

MONITORING
EVENT

<I’, G’, ψ>

Similarity
Constraints

Commitment
Constraints

SENSING

ψ

EXECUTION

Figure 1: A model of replanning

2. M2 | Replanning to Reduce Computation: When the
state of the world forces a change from a plan ΠP to a
new one Π′

P , in the extreme case, Π′
P may bear no rela-

tion to ΠP . However, it is most desirable that the cost of
comparing the differences between the two plans with re-
spect to execution in the world be reduced as far as possi-
ble. The problem of minimizing this cost can be re-cast as
one of minimizing the differences between the two plans
Π′

P and ΠP using syntactic constraints on the form of the
new plan. These syntactic constraints are added to the set
ψΠP .

3. M3 | Replanning for Multi-agent Scenarios: In many
real world scenarios, there are multiple agents A1 . . . An

that share an environment and hence a world state.1 The
individual plans of these agents, Π1 . . .Πn respectively,
affect the common world state that the agents share and
must plan in. This leads to the formation of dependencies,
or commitments, by other agents on an agent’s plan. These
commitments can be seen as special types of constraints
that are induced by an executing plan, and that must be
obeyed when creating a new plan as a result of replanning.
The aggregation of these commitments forms the set ψΠP

for this model.

In the following section, we explore the composition of
the constraint set ψΠ (for any given plan Π) in more de-
tail. First, however, we consider a real world application
scenario and the application of the three replanning models
described above to it, in order to illustrate that these models
are broad enough to capture the various kinds of replanning
techniques.

3.1 Example: Planetary Rovers
Planning for planetary rovers is a scenario that serves as a
great overarching application domain for describing the mo-
tivations behind the various models of replanning that we
propose in this work. Automating the planning process is
central to this application for three reasons: (1) the complex
checks and procedures that are part of large-scale or critical

1Note that this is the case regardless of whether the planner
models these agents explicitly or chooses to implicitly model them
in the form of a dynamic world.

applications can often only be fully and correctly satisfied
by automation; (2) there are limited communication oppor-
tunities between the rover and and the control station; and
(3) the distances involved rule out immediate tele-operation,
since there is a considerable communication lag between a
rover operating on the surface of a distant planet and the
control center.

1. M1: This model is frequently used by planning algo-
rithms that create path and motion plans for the rover’s
operation. Often, changes to the environment (e.g. the
detection of an obstacle such as a rock ahead) will ren-
der the currently executing plan useless; in cases where
the system needs to react immediately and produce a new
plan, creating a completely new plan works better than
trying to salvage some version of an existing plan.

2. M2: In the case of planetary rovers, both computational
and cognitive costs are present when it comes to compar-
ing Π and Π′. Changes to an executing plan Π must pass
muster with human mission controllers on Earth as well
as mechanical and electrical checks on-board the rover it-
self. It is thus imperative that the replanning model is
aware of the twin objectives of minimizing cognitive load
on the mission controllers as well as minimizing the com-
putation required on board the rover when vetting a new
plan Π′ that replaces Π. In this case, the set ψΠP will con-
tain constraints that try to minimize the effort needed to
reconcile Π′ with Π, and the metric used in the reconcilia-
tion determines the contents of ψΠP . These can be seen as
a syntactic version of plan stability constraints, as against
the semantic stability constraints (based on commitments)
that we go on to propose.

3. M3: In a typical scenario, it is also possible that there may
be multiple rovers working in the same environment, with
knowledge (complete or partial) of the other rovers’ plans.
This knowledge in turn leads to dependencies which must
be preserved when the plans of one (or more) of the rovers
change – for example, rover Spirit might depend on rover
Opportunity to transmit (back to base) the results of a sci-
entific experiment that it plans to complete. If Opportu-
nity now wishes to modify its current plan ΠO, it must
pay heed to the commitment to communicate with Spirit
– and pass on the data that results from that communica-
tion – when devising its new plan Π′

O.

4 Replanning Constraints
As outlined in the previous section, the replanning problem
can be decomposed into various models that are defined by
the constraints that must be respected while transitioning
from the old plan Π to the new plan Π′. In this section,
we define those constraints, and explore the composition of
the set ψ for each of the models defined previously.

4.1 Replanning as Restart
By the definition of this model, the old plan ΠP is com-
pletely abandoned in favor of a new one. There are no con-
straints induced by the previous plan that must be respected,
and thus the set ψΠP is empty. Instead, what we have is a
new problem instance P ′ whose composition is completely
independent of the set ψΠP .

4.2 Replanning to Reduce Computation
It is often desirable that the replan for the new problem in-
stance P ′ resemble the previous plan ΠP in order to reduce
the computational effort associated with verifying that it still
meets the objectives, and to ensure that it can be carried
out in the world. We name the effort expended in this en-
deavor as the reverification complexity associated with a pair
of plans ΠP and Π′

P , and informally define it as the amount
of effort that an agent has to expend on comparing the dif-
ferences between an old plan ΠP and a new candidate plan
Π′

P with respect to execution in the world.
This effort can either be computational, as is the case

with automated agents like rovers and robots; or cognitive,
when the executor of the plans is a human. Real world ex-
amples where reverification complexity is of utmost impor-
tance abound, including machine-shop or factory-floor plan-
ning; planning for assistive robots and teaming; and plane-
tary rovers (see Section 3.1). Past work on replanning has
addressed this problem via the idea of plan stability (Fox
et al. 2006). The general idea behind this approach is to
preserve the stability of the replan Π′

P by minimizing some
notion of difference with the original plan ΠP . In the fol-
lowing, we examine two such ways of measuring the differ-
ence between pairs of plans, and how these can contribute
constraints to the set ψΠP that will minimize reverification
complexity.

Action Similarity Plans are defined, first and foremost, as
sequences of actions that achieve specified objectives. The
most obvious way to compute the difference between a given
pair of plans then is to compare the actions that make up
those plans. (Fox et al. 2006) defines a way of doing this -
given an original plan Π and a new plan Π′, they define the
difference between those plans as the number of actions that
appear in Π and not in Π′ plus the number of actions that
appear in Π′ and not in Π. If the plans Π and Π′ are seen
as sets comprised of actions, then this is essentially the sym-
metric difference of those sets, and we have the following
constraint:2 min |Π4 Π′|.

This method of gauging the similarity between a pair of
plans suffers from some obvious pitfalls; a very simple one
is that it does not take the ordering of actions in the plans
into account at all. Consider the simple plans Π : 〈a1, a2〉
and Π′ : 〈a2, a1〉; the difference between these two plans is
Π 4 Π′ = ∅. However, from a replanning perspective, it
seems obvious that these two plans are really quite different,
and may lead to different results if the actions are not com-
mutative. In order to account for such cases, we would need
to consider the ordering of actions within a plan, and more
generally, the causal structure of a plan.

Causal Link Similarity The next step in computing plan
similarity is to look not just at the actions that constitute
the plans under comparison, but to take the causal structure
of those plans into account as well. Work on partial or-
der planning (POP) has embedded a formal notion of causal
links quite strongly within the planning literature. Past par-
tial order planning systems (Penberthy and Weld 1992;

2Given this constraint, the similarity and difference of a pair of
plans are inverses, and hence the name ‘Action Similarity’.

Joslin and Pollack 1995) have looked at the idea of dif-
ferent serializations of the same partial order plan. Given
plans Π and Π′, and CL(Π) and CL(Π′) the sets of causal
links on those plans respectively, a simple constraint to en-
force causal similarity would be: min |CL(Π) 4 CL(Π′)|.
Note that this number may be non-zero even though the two
plans are completely similar in terms of action similarity;
i.e. (Π 4 Π′) = ∅. This analysis need not be restricted to
causal links alone, and can be extended to arbitrary ordering
constraints of a non-causal nature too, as long as they can be
extracted from the plans under consideration.

4.3 Replanning for Multi-agent Scenarios
In a multiperson situation, one man’s goals may be an-
other man’s constraints. – Herb Simon (Simon 1964)

In an ideal world, a given planning agent would be the sole
center of plan synthesis as well as execution, and replanning
would be necessitated only by those changes to the world
state that the agent cannot foresee. However, in the real
world, there exist multiple such agents, each with their own
disparate objectives but all bound together by the world that
they share. A plan ΠP that is made by a particular agent
affects the state of the world and hence the conditions un-
der which the other agents must plan – this is true for every
agent. In addition, the publication of a plan ΠA

P by an agent
A leads to other agents predicating the success of their own
plans on parts of ΠA

P , and complex dependencies are devel-
oped as a result. Full multi-agent planning can resolve the
issues that arise out of changing plans in such cases, but it is
far from a scalable solution for real world domains currently.
Instead, this multi-agent space filled with dependencies can
be projected down into a single-agent space with the help
of commitments as defined by (Cushing and Kambhampati
2005). These commitments are related to an agent’s current
plan Π, and can describe different requirements that come
about:

1. when Π changes the world state that other agents have to
plan with

2. when the agent decides to execute Π, and other agents
predicate their own plans on certain aspects of it

3. due to cost or time based restrictions imposed on the agent
4. due to the agent having paid an up-front setup cost to en-

able the plan Π

A simple travel example serves to demonstrate these dif-
ferent types of commitments. Consider an agent A1 who
must travel from Phoenix (PHX) to Los Angeles (LAX). A
travel plan Π that is made for agent A1 contains actions that
take it from PHX to LAX with a long stopover at Las Vegas
(LAS). A1 is friends with agent A2, who lives in LAS, and
thus publicizes the plan of passing through LAS. A2 then
makes its own plan to meet A1 – this depends on A1’s pres-
ence at the airport in LAS. If there are changes to the world
(for e.g., a lower airfare becomes available), there are sev-
eral commitments that a planner must respect while creating
a new plan Π′ for A1. First, there are commitments to other
agents – in this case, the meeting with A2 in LAS. There are
also setup and reservation costs associated with the previous
plan; for example, A1 may have paid a non-refundable air-
fare as part of Π. Finally, there may be a deadline on getting

to LAX, and any new plan has to respect that commitment
as well.

At first blush, it seems that the same kinds of constraints
that seek to minimize reverification complexity between
plans Π and Π′ (minimizing action and causal link differ-
ence between plans) will also serve to preserve and keep the
most commitments in the world. Indeed, in extreme cases,
it might even be the case that keeping the structures of Π
and Π′ as similar as possible helps keep the maximum num-
ber of commitments made due to Π. However, this is cer-
tainly not the most natural way of keeping commitments.
In particular, this method fails when there is any significant
deviation in structure from Π to Π′; unfortunately, most un-
expected changes in real world scenarios are of a nature that
precludes retaining significant portions of the previous plan.
For example, in the (continuing) air travel example from
above, agent A1 has a commitment not to the plan Π itself,
but rather to the event of meeting A2. This suggests mod-
eling commitments natively as state conditions (as opposed
to casting them as extraneous constraints on plan structure)
as goals that must be either achieved or preserved by a plan
as a possible replanning constraint. We elaborate on this in
Section 5.3.

5 Solution Techniques
So far, we have looked at three different ways in which the
replanning problem can be represented, and delineated the
differences between these models via the constraints that
need to be considered when making new plans in a changed
world. We now turn our attention to the planning techniques
that are (or can be) used to solve these variants.

5.1 T1: Classical Planning
For the replanning as restart model, the problem is defined
as one of going from a plan ΠP that solves the problem in-
stance P = 〈I,G〉 to the best new plan Π′

P that is valid for
the new problem instance P ′ = 〈I ′, G′〉. I ′ is the state of
the world at which ΠP stops executing to account for the
change that triggered replanning; that is, replanning com-
mences from the current state of the world. G′ is the same
as G unless new goals are explicitly added as part of the
changes to the world. The replanning constraint set ψΠP

is empty, since replanning is being performed from scratch.
This new instance is then given to a standard classical plan-
ner to solve, and the resulting plan is designated Π′

P .

5.2 T2: Specialized Replanning Techniques
When it comes to replanning to reduce computation and
associated constraints, techniques that implement solutions
that conform to these constraints must necessarily be able to
compile them into the planning process in some way. This
can be achieved by implementing plan stability metrics –
either explicitly by comparing each synthesized plan candi-
date with the existing plan ΠP , or implicitly by embedding
these metrics within the search process. One way of doing
the latter is to use a planner such as LPG (Gerevini, Saetti,
and Serina 2003), which uses local search methods, and to
structure the evaluation function such that more syntactic
similarity between two plans – similar actions, for example
– is preferred. Such an approach is used by (Srivastava et al.

2007) in the generation of a set of diverse plans where the
constituent plans differ from each other by a defined metric;
for replanning where search re-use is of importance, the ob-
jective can instead be to produce minimally different plans
within that set. An earlier version of this approach can be
seen in the Casper system’s iterative repair approach (Knight
et al. 2001).

5.3 T3: Partial Satisfaction Planning
We now turn our attention to replanning techniques that can
be used when the dependencies or commitments towards
other agents due to an agent A’s original plan Π (solving
the problem instance P) must be maintained. The con-
straint set ψΠA

P now contains all those commitments to other
agents that were made by the plan Π. We follow Cushing
et al. (Cushing and Kambhampati 2005) in modeling com-
mitments as soft constraints that an agent is not mandated to
necessarily achieve for plan success. More generally, com-
mitments – as reservations, prior dependencies or deadlines
– can be modeled as soft trajectory constraints on any new
plan Π′ that is synthesized. Modeling commitments as soft
constraints (instead of hard) is essential because not all com-
mitments are equal. A replan Π′ may be valid even if it
flouts a given commitment; indeed, it may be the only pos-
sible replan given the changed state of the world. Soft goals
allow for the specification of different priorities for different
commitments by allowing for the association of a reward for
achieving a given goal, and a penalty for non-achievement.
Both of these values are optional, and a commitment may
either be seen as an opportunity (accompanied by a reward)
or as a liabiity (when assigned a penalty). The quality of
a replan Π′ – in terms of the number of commitment con-
straints that it satisfies – can then be discussed in terms of
the net-benefit, which is a purely arithmetic value.

An added advantage of modeling commitments as soft
goals is that the constraints on plan structure discussed pre-
viously in Section 4.2 can be cast as commitments too.
These constraints are commitments to the structure of the
original plan Π, as against commitments to other agents or
to other extraneous phenomena like deadlines etc. The ad-
vantage in doing this is that new plans and their adherence
to commitments can be evaluated solely and completely in
terms of the net-benefit of those plans; this makes the en-
forcement of the replanning constraints during the planning
process more amenable to existing planning methods. We
thus devise a natural way of combining two distinct quality
issues in replanning: (1) how good a replan Π′ is for solving
the changed problem instance 〈I ′, G′〉; and (2) how much
Π′ respects and balances the given replanning constraints,
which may be in service of completely different objectives
like reducing the computation involved in verifying a new
plan, or commitments to other agents in the world.

To obtain the new problem instance P ′ from the original
problem P , we perform the following transformations: I ′
is, as before, the state of the world at which execution is
stopped because of the changes that triggered replanning.
G′ consists of all outstanding goals in the set G as well as
any other explicit changes to the goal-set; in addition, the
constraints from the set ψΠA

P are added to G′ as soft goals,
using the compilations described below. The new problem

a

aas

a

acs

prec(a)

prec(a) prec(a)

prec(a)

eff(a)

eff(a) eff(a)

eff(a)

a-executed ∀ f ∈ eff(a), f-produced

ACTION SIMILARITY CAUSAL SIMILARITY

(i) (ii)

Figure 2: Compiling action and causal similarity to PSP by
creating new effects, actions that house those effects, and
soft goals on those effects.

instance is then given to a PSP planner to solve for the plan
with the best net-benefit, which is then designated Π′A

P .
The syntactic plan similarity constraints discussed at

length in Section 4.2 can be cast as PSP constraints, in the
form of soft goals. In the following, we describe a general
compilation of the constraints in ψΠA

P to a partial satisfac-
tion planning problem instance. We follow (van den Briel et
al. 2004) in defining a PSP Net Benefit problem as a plan-
ning problem P = (F,O, I,Gs) (where F is a finite set
of fluents, O is a finite set of operators and I ⊆ F is the
initial state as defined earlier in our paper) such that each
action a ∈ O has a “cost” value Ca ≥ 0 and, for each goal
specification g ∈ G there exists a “utility” value Ug ≥ 0.
Additionally, for every goal g ∈ G, a ‘soft’ goal gs with re-
ward rg and penalty pg is created; the set of all soft goals
thus created is added to a new set Gs.

The intuition behind casting these constraints as goals is
that a new plan (replan) must be constrained in some way
towards being similar to the earlier plan. However, mak-
ing these goals hard would over-constrain the problem – the
change in the world from I to I ′ may have rendered some of
the earlier actions (or causal links) impossible to preserve.
Therefore the similarity constraints are instead cast as soft
goals, with rewards or penalties for preserving or breaking
(respectively) the commitment to similarity with the earlier
plan. In order to support these goals, new fluents need to be
added to the domain description that indicate the execution
of an action, or achievement of a fluent respectively. Fur-
ther, new copies of the existing actions in the domain must
be added to house these effects. Making copies of the ac-
tions from the previous plan is necessary in order to allow
these actions to have different costs from any new actions
added to the plan.

Compiling Action Similarity to PSP The first step in the
compilation is converting the action similarity constraints in
ψΠA

P to soft goals to be added to Gs. Before this, we exam-
ine the structure of the constraint set ψΠA

P ; for every ground
action ā (with the names of the objects that parameterize it)
in the old plan Π, the corresponding action similarity con-
straint is Ψā ∈ ψΠA

P , and that constraint stores the name of
the action as well as the objects that parameterize it.

Next, a copy of the set of operators O is created and
named Oas; similarly, a copy of F is created and named
Fas. For each (lifted) action a ∈ Oas that has an instance in
the original plan Π, a new fluent named “a-executed” (along

-400

0

400

800

1200

1600

P1 P2 P3

N
et

 B
e

n
ef

it

Problems

Old (Comm.)

New (Comm.)

New (Comm.+Sim)

Figure 3: Net-benefit of plans for zenotravel problems, Ex-
periment 1.

0

100

200

300

400

P1 P2 P3

N
et

 B
e

n
ef

it

Problems

Old (Comm.)

New (Comm.)

New (Comm.+Sim)

Figure 4: Net-benefit of plans for driverlog problems, Ex-
periment 1.

with all the parameters of a) is added to the fluent set Fas.
Then, for each action a ∈ Oas, a new action aas which is
a copy of the action a that additionally also gives the predi-
cate a-executed as an effect, is created. The process of go-
ing from the original action a to the new one aas is depicted
graphically in Figure 2(i). In the worst case, the number of
actions in each Oas could be twice the number in O.

Finally, for each constraint Ψā ∈ ψΠA
P , a new soft goal

gā is created with corresponding reward and penalty values
rgā and pgā respectively, and the predicate used in gā is ā-
executed (parameterized with the same objects that ā con-
tains) from Oas. All the gā goals thus created are added to
Gs. In order to obtain the new compiled replanning instance
P ′ from P , the initial state I is replaced with the state at
which execution was terminated, I ′; the set of operators O
is replaced withOas; and the set of fluentsF is replaced with
Fas. The new instance P ′ = (Fas, Oas, I

′, Gs) is given to a
PSP planner to solve.

Compiling Causal Similarity to PSP Causal similarity
constraints can be compiled to PSP in a manner that is very
similar to the above compilation. The difference that now
needs to be considered is that the constraints are no longer
on actions, but on the grounded fluents that comprise the
causal links between the actions in a plan instead.

The first step is to augment the set of fluents; a copy of
F is created and named Fcs. For every fluent f ∈ F , a new
fluent named “f -produced” is added to Fcs, along with all
the original parameters of f . A copy of the set of operators
O is created and named Ocs. Then, for each action in a ∈
Ocs, a new action acs is added; acs is a copy of action a,
with the additional effects that for every fluent fa that is in
the add effects of the original a, acs contains the effect fa-
produced – this process is shown in Figure 2(ii). Thus in the
worst case, the number of effects of every action acs is twice
the number of effects of the original action a, and the size of
Ocs is twice that of O.

Finally, the causal constraints in ψΠA
P must be converted

to soft goals that can be added to Gs. The constraints Ψ ∈

-20000.00

-15000.00

-10000.00

-5000.00

0.00

5000.00

1 2 3 4 6

a_netben b1_pert_netben c1_netben b2_pert_netben

c2_netben b3_pert_netben c3_netben

-20000.00

-15000.00

-10000.00

-5000.00

0.00

5000.00

1 2 3 4 6

a_netben b1_pert_netben c1_netben b2_pert_netben

c2_netben b3_pert_netben c3_netben

Figure 5: Net-benefit of plans for zenotravel problems, Experiment 2.

ψΠA
P are obtained by simulating the execution of Π from I

using the operators in O. Each ground add-effect f̄e of each
ground action āΠ in Π is added as a new constraint Ψf̄e .
Correspondingly, for each such new constraint added, a new
soft goal gf̄e is created whose fluent corresponds to f̄e, with
reward and penalty values rgf̄e and pgf̄e respectively.3 All
the goals thus created are added to Gs. The new planning
instance to be provided to the PSP planner is thus given as
P ′ = (Fcs, Ocs, I

′, Gs), where I ′ is the state of the fluents
when execution was previously suspended.

6 Empirical Study
Generally, work on specialized (single-agent) replanning
techniques claims the support of experiments that exhibit ei-
ther: (1) an advantage over from-scratch replanning in terms
of speed or efficiency; or (2) greater plan stability when
compared to other techniques. Unfortunately, our improved
understanding of replanning as a general problem rather than
as any single technique renders such an evaluation unsatis-
factory. Since different kinds of replanning problems can
be realized from different instantiations of the constraint set
ψ, and these constraints can all be weighted as desired, one
thing that we should evaluate is whether our single general
model can model any problem (and technique) in the re-
planning spectrum. Given access to such a general model,
it is also rather straightforward to set up problem instances
that favor a specific technique over all other replanning tech-
niques. Such results can be attributed either to the fact that
the other techniques ignore the constraints that the first takes
into account, or that they use surrogate constraints in order to
mimic them. In the following, we describe the setup of three
such experiments, and present preliminary results from the
first two.

Setting Rewards & Penalties – The compilations outlined
in Section 5.3, as well as the results that follow, are sensitive
to the actual value of the rewards and the penalties that are
assigned to the goals that the planner must achieve. We are
currently in the process of conducting a theoretical as well as
empirical analysis of the effect of these values on the plans
that are produced, as well as the time taken to replan. For the
experiments outlined below, we assign a reward of 500 units
and a penalty of 1000 units to the regular, state space goals.

3Note that in the general case, we would need to consider con-
sumers – i.e., actions that consume the causal link – apart from the
producers of those links, in order to avoid over-constraining the
new problem. However, we assume here that the original plan does
not contain any superfluous actions.

Similarity goals are given a reward of 0 units, and a penalty
of 1000 units (since they can be seen as commitments to the
form of the previous plan).

6.1 Planning System
Since PSP is key to the success of our approach, we used the
planner Sapa Replan (Talamadupula et al. 2010), a planner
that has been used previously to support applications that
require replanning. Sapa Replan additionally handles tem-
poral planning and partial satisfaction. The system contains
an execution monitor that oversees the execution of the cur-
rent plan in the world, which focuses the planner’s attention
by performing objective (goal) selection, while the planner
in turn generates a plan using heuristics that are extracted by
supporting some subset of those objectives. Unfortunately,
Sapa Replan’s support for all of these varied functionalities
renders it less scalable to an increase in the number of soft
goals that must concurrently be pursued by the planner. This
rules out extensive experimentation, as well as the testing of
theories such as the one proposed in Experiment 4 (see Sec-
tion 6.2). We are currently working on using faster planners
that can handle larger numbers of soft goals for our experi-
ments.

6.2 Experiments
For our experiments, we compared similarity based replan-
ning against commitment sensitive replanning (Experiment
1) and against replanning from scratch (Experiment 2). In
order to set up a compilation from similarity based replan-
ning into PSP, we followed the procedure outlined in Section
5.3 to alter the IPC domains that we considered, and obtain
the respectiveOas operator sets and the P ′ problems (which
we denote Pa for the experiments). We then ran all the prob-
lem instances for all our experiments on the same planner.

Experiment 1 – We ran the planner with Oas and Pa, and
recorded the net-benefit values of the resulting plan πa. We
then created two different versions of this problem, Pb and
Pc respectively, to simulate the effect of changes in the
world (and hence force “replanning”). The perturbations
used to generate Pb from Pa involved deleting facts from
the initial state, deleting goals, or both. Pc was a copy of
Pa that additionally contained new “similarity” goals on the
execution predicates of every action o ∈ πa. Each of these
similarity goals carried a penalty with it – one that is levied
for every action in πc that deviates from πa (and hence low-
ers πc’s similarity to πa). We ran the problem on Pb and Pc

as well and recorded the net-benefit and makespan values
from these runs.

-30000.00

-25000.00

-20000.00

-15000.00

-10000.00

-5000.00

0.00

5000.00

10000.00

1 3 5 7 10

a_netben b1_pert_netben c1_netben b2_pert_netben

c2_netben b3_pert_netben c3_netben

-30000.00

-25000.00

-20000.00

-15000.00

-10000.00

-5000.00

0.00

5000.00

10000.00

1 3 5 7 10

a_netben b1_pert_netben c1_netben b2_pert_netben

c2_netben b3_pert_netben c3_netben

Figure 6: Net-benefit of plans for driverlog problems, Experiment 2.

Experiment 2 – For this experiment, we generated more
perturbations to each Pa in a randomized fashion. These
perturbations involved deleting facts from the initial state,
deleting goals, or both. From each problem instance Pa we
produced three perturbed instances Pb1

. . . Pb3
by deleting

(at random) up to a maximum of 4 facts from the original
initial state, and a maximum of 2 goals from the original
set of goals to be achieved. Then, once the perturbed in-
stances were generated, we generated three corresponding
“similarity” instances Pc1

. . . Pc3
by copying Pb1

. . . Pb3
re-

spectively, to force the planner to adopt a minimal perturba-
tion approach. This was achieved by adding an additional
set of “similarity” soft goals to the instances Pci ; these sim-
ilarity goals were generated using the same process as for
Experiment 1. The addition of a penalty ensured that the
planning process tried, as far as possible, to include the ac-
tions from the previous plan in the new plan. Due to the
way the IPC problem instances are set up, even the smallest
random perturbation to the initial state can render the per-
turbed problem unsolvable. To account for this problem, we
created copies of all the Pbi and Pci instances with only the
goals deleted; that is, the initial state was unchanged, and
only goal perturbations were introduced.

The resulting net-benefit values are plotted in Figure 5 and
Figure 6; the plot on the left denotes those instances where
the perturbation was performed on both the initial state as
well as the goals, whereas the plot on the right represents
those with only goal perturbations. The numbers along the
X-axis are the IPC problem number, and the columns (from
left to right) denote the instance that produced that value –
respectively, Pa, Pb1 , Pc1 , Pb2 , Pc2 , Pb3 and Pc3 . Every
pair of columns after the first one (there are three such pairs)
signifies a direct comparison between the net-benefit for the
perturbed problem, and the perturbed problem with similar-
ity constraints added. Since the net-benefit values of many
of the resulting plans are negative, the X-axis is shifted fur-
ther up along the Y-axis. Due to this, smaller columns in-
dicate better plan quality, since those net-benefit values are
higher. We preserve the same axes for a given domain, so
direct comparisons may be made between the plots on the
left and the right.

Experiment 3 – Experiment 2 can also be modified in order
to induce a direct comparison between similarity and com-
mitment based replanning. Such an experiment would re-
quire a component that extracts commitments from a given
plan π in an automated and unbiased manner; these commit-
ments (or some randomized subset therein) would then be
added in as goals for the perturbed version of the commit-

ment based problem. The similarity based problem would be
perturbed as before, and similarity goals added to it based on
the actions in the original plan. Both of these instances can
then be run on the same planning system, and the net-benefit
values returned may then be compared directly. We have
constructed a preliminary version of such a module, and are
in the process of collecting results for this experiment.

Experiment 4 – Another experiment that can be performed
is to contrast replanning methods that preserve similarity (ei-
ther action or causal) against methods that instead preserve
(state space) commitments. This can be done by fixing the
number of commitments C that must be adhered to when
transitioning from the original plan Π to a new plan Π′. Sup-
pose that the state space of the original plan Π is given by
S, where each element s ∈ S is a state that results from the
execution of actions a ∈ Π starting from the initial state I .
When the value of C is zero – that is, no commitments need
be preserved when replanning – the net benefit of the new
plan Π′ will be at its highest value. Then, as the value of C
tends toward |S|, the net benefit of the plan generated by the
commitment preserving approach will steadily change, until
at C = |S| it is the same as the previous plan Π (indeed, at
this stage, the new plan Π′ is the same as Π). We are cur-
rently evaluating this experiment across various domains.

7 Conclusion
In this paper, we presented a general model of the single-
agent replanning problem, and described three replanning
paradigms that are distinguished by the constraints that they
are bound to satisfy during the replanning process: replan-
ning as restart, replanning to reduce computation, and re-
planning for multi-agent scenarios. In particular, we showed
how commitment to certain constraints – whether they be
from the structure of the previous plan, or understandings
with other agents – can influence replanning. We then
looked at solution techniques from the single-agent planning
community for these three paradigms. Finally, we presented
an evaluation of our main claims based on a compilation of
the previously defined replanning constraints into a partial
satisfaction planning framework.

8 Acknowledgements
We wish to thank anonymous reviewers for helpful com-
ments and suggestions on past versions of this paper. Kamb-
hampati’s research is supported in part by the ARO grant
W911NF-13-1-0023, the ONR grants N00014-13-1-0176,
N00014-09-1-0017 and N00014-07-1-1049, and the NSF
grant IIS201330813.

References
[Bartold and Durfee 2003] Bartold, T., and Durfee, E. 2003.
Limiting disruption in multiagent replanning. In Proceed-
ings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems, 49–56. ACM.

[Cushing and Kambhampati 2005] Cushing, W., and Kamb-
hampati, S. 2005. Replanning: A New Perspective. In Proc.
of ICAPS 2005.

[Fikes, Hart, and Nilsson 1972] Fikes, R.; Hart, P.; and Nils-
son, N. 1972. Learning and executing generalized robot
plans. Artificial intelligence 3:251–288.

[Fox et al. 2006] Fox, M.; Gerevini, A.; Long, D.; and Se-
rina, I. 2006. Plan stability: Replanning versus plan repair.
In Proc. of ICAPS 2006.

[Fritz and McIlraith 2007] Fritz, C., and McIlraith, S. 2007.
Monitoring plan optimality during execution. In Proc. of
ICAPS 2007, 144–151.

[Gerevini, Saetti, and Serina 2003] Gerevini, A.; Saetti, A.;
and Serina, I. 2003. Planning through stochastic local search
and temporal action graphs in lpg. J. Artif. Intell. Res. (JAIR)
20:239–290.

[Joslin and Pollack 1995] Joslin, D., and Pollack, M. E.
1995. Least-cost flaw repair: A plan refinement strategy
for partial-order planning. In Proceedings of the National
Conference on Artificial Intelligence, 1004–1009.

[Kambhampati 1990] Kambhampati, S. 1990. Mapping and
retrieval during plan reuse: a validation structure based ap-
proach. In Proceedings of the Eighth National Conference
on Artificial Intelligence, 170–175.

[Knight et al. 2001] Knight, S.; Rabideau, G.; Chien, S.; En-
gelhardt, B.; and Sherwood, R. 2001. Casper: Space ex-
ploration through continuous planning. Intelligent Systems,
IEEE 16(5):70–75.

[Komenda et al. 2008] Komenda, A.; Pechoucek, M.; Biba,
J.; and Vokrinek, J. 2008. Planning and re-planning in multi-
actors scenarios by means of social commitments. In Com-
puter Science and Information Technology, 2008. IMCSIT
2008. International Multiconference on, 39–45. IEEE.

[Komenda, Novák, and Pěchouček 2012] Komenda, A.;
Novák, P.; and Pěchouček, M. 2012. Decentralized multi-
agent plan repair in dynamic environments. In Proceedings
of the 11th International Conference on Autonomous Agents
and Multiagent Systems-Volume 3, 1239–1240. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

[Meneguzzi, Telang, and Singh 2013] Meneguzzi, F.;
Telang, P. R.; and Singh, M. P. 2013. A first-order
formalization of commitments and goals for planning.

[Nebel and Koehler 1995] Nebel, B., and Koehler, J. 1995.
Plan reuse versus plan generation: a complexity-theoretic
perspective. Artificial Intelligence 76:427–454.

[Penberthy and Weld 1992] Penberthy, J., and Weld, D.
1992. UCPOP: A sound, complete, partial order planner
for ADL. In Proceedings of the Third International Con-
ference on Knowledge Representation and Reasoning, 103–
114. Citeseer.

[Simon 1964] Simon, H. 1964. On the concept of organiza-
tional goal. Administrative Science Quarterly 1–22.

[Srivastava et al. 2007] Srivastava, B.; Nguyen, T.; Gerevini,
A.; Kambhampati, S.; Do, M.; and Serina, I. 2007. Domain
independent approaches for finding diverse plans. In Proc.
of IJCAI, volume 7, 2016–2022.

[Talamadupula et al. 2010] Talamadupula, K.; Benton, J.;
Kambhampati, S.; Schermerhorn, P.; and Scheutz, M. 2010.
Planning for human-robot teaming in open worlds. ACM
Transactions on Intelligent Systems and Technology (TIST)
1(2):14.

[van den Briel et al. 2004] van den Briel, M.; Sanchez, R.;
Do, M.; and Kambhampati, S. 2004. Effective approaches
for partial satisfaction (over-subscription) planning. In Pro-
ceedings of the National Conference on Artificial Intelli-
gence, 562–569.

[Van Der Krogt and De Weerdt 2005] Van Der Krogt, R.,
and De Weerdt, M. 2005. Plan repair as an extension of
planning. In Proc. of ICAPS 2005.

[Wagner et al. 1999] Wagner, T.; Shapiro, J.; Xuan, P.; and
Lesser, V. 1999. Multi-level conflict in multi-agent systems.
In Proc. of AAAI Workshop on Negotiation in Multi-Agent
Systems.

[Wooldridge 2000] Wooldridge, M. 2000. Reasoning about
rational agents. MIT press.

	Introduction
	Related Work
	The Replanning Problem
	Example: Planetary Rovers

	Replanning Constraints
	Replanning as Restart
	Replanning to Reduce Computation
	Replanning for Multi-agent Scenarios

	Solution Techniques
	T1: Classical Planning
	T2: Specialized Replanning Techniques
	T3: Partial Satisfaction Planning

	Empirical Study
	Planning System
	Experiments

	Conclusion
	Acknowledgements

