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ABSTRACT
Robots are currently being used in and developed for critical
HRI applications such as search and rescue. In these sce-
narios, humans operating under changeable and high-stress
conditions must communicate effectively with autonomous
agents, necessitating that such agents be able to respond
quickly and effectively to rapidly-changing conditions and
expectations. We demonstrate a robot planner that is able
to utilize new information, specifically information originat-
ing in spoken input produced by human operators.

We show that the robot is able to learn the pre- and
postconditions of previously-unknown action sequences from
natural language constructions, and immediately update (1)
its knowledge of the current state of the environment, and
(2) its underlying world model, in order to produce new and
updated plans that are consistent with this new information.
While we demonstrate in detail the robot’s successful oper-
ation with a specific example, we also discuss the dialogue
module’s inherent scalability, and investigate how well the
robot is able to respond to natural language commands from
untrained users.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing ; I.2.7 [Artificial Intelligence]: Natural Language Pro-
cessing—Language Parsing and Understanding ; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
Plan execution, formation, and generation

General Terms
HRI Communication
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1. INTRODUCTION
Robots are currently being used in and developed for criti-
cal HRI applications (e.g., search and rescue) in which they
must smoothly adapt to new information, and communicate
quickly and effectively with human operators despite serious
challenges imposed by the task and environment. These sce-
narios tend to induce high stress levels in human operators,
while rapidly-changing conditions and expectations combine
to increase operators’ cognitive loads. If robots are be truly
helpful in such scenarios, they must be able to communicate
naturally and react flexibly to dynamic conditions by, for
example, updating previous goals and accepting new goals
according to changing information about the world. In this
paper, we describe a robot architecture capable of under-
standing new action sequences presented via natural lan-
guage and integrating the new knowledge to allow the robot
to reason about the new abilities (e.g., in problem-solving).

The architecture described here features a planner that
utilizes new information, such as state updates from sensory
processing, at run time (e.g., to generate a plan to enter
and explore a room when informed of a newly-detected open
doorway). We outline extensions to the planner that allow
us to update its list of available actions (e.g., to include
a new capability to enter rooms by pushing closed doors).
We then demonstrate that the robot is able to learn the pre-
conditions for and the postconditions of previously-unknown
action sequences from a natural language description (e.g.,
“if you are at a closed door and you push it one meter, you
will be in the room”), and immediately apply this knowledge
to generate and update plans.

In previous work [3, 2] we described a natural language
human-robot interaction system that uses a trainable parser
to operate on spoken natural language input, producing in-
crementally and in parallel (1) a semantic representation,
and (2) identification of and information about new word
forms. In this paper, we expand on this in two key ways.
First, the robot’s learning capabilities are expanded to in-
clude learning pre- and postconditions of an action. For
example, given a robot’s limited conceptual knowledge, it
may not be immediately clear that, when one is in the hall-
way and goes through a door, one is then in a room. Our
method allows the robot to accept information given ver-



bally, which a planner can then combine with the robot’s
existing knowledge in order to produce logical insights. Sec-
ond, our method of referent grounding is expanded to allow
the robot to infer the existence of entities that have not been
explicitly mentioned. For example, when the robot knows
that doors are connected to rooms, mention of a door implies
that there is also a room.

The structure of the paper is as follows. First we summa-
rize relevant previous work and provide an overview of the
system in Section 2. Next we describe the relevant modules
in detail: in Section 3, we detail the dialogue module using
an example, and in Section 4, we discuss the robot’s planner.
This is followed by, in Section 5, a brief evaluation of the in-
formal application of the system to human language elicited
from naive subjects. Finally, we discuss our conclusions and
future work in Section 6.

2. BACKGROUND
Planners have improved significantly in terms of scalabil-

ity and speed (c.f. [12]), but this has come at the cost of
standardizing assumptions about the nature of the input. In
particular, modern planners typically assume full up-front
knowledge of the world as well as of the underlying model
that the robot is subject to—the closed world and model as-
sumption (see section 4.2 for a detailed discussion of this).
However, this assumption is unsuited for dynamic scenarios
like search and rescue, where the world is constantly chang-
ing with new objects and conditions continually being dis-
covered. Moreover, even the model is subject to change (e.g.,
when new capabilities are learned at run time). A number
of systems have considered execution monitoring and plan
repair or replanning upon the discovery of an inconsistent
execution state, notably [11] and [7] among others. There
has also been some work on systems that control service
robots, the most relevant being [1]. Yet, no robotic archi-
tecture has the ability to integrate new discoveries at all
levels—including run-time model updates in the planner—
in order to take best advantage of the new information.

Similarly, many natural language processing systems re-
quire that all necessary knowledge be provided at startup.
However, a number of projects have begun to investigate
robotic architectures that can learn actions and action se-
quences. For example, [14, 18, 13] learn action sequences
and a single associated precondition: the environment in
which the sequence is learned is assumed to be the only
environment in which the sequence is valid. While this as-
sumption may be sufficient for certain tasks and in certain
domains (e.g., kitchen tasks tend to be performed only in
the kitchen) it limits the usefulness of the learned sequence
(e.g., if the robot must be explicitly taught a sweeping task
in each room of the house).

Similarly, [9, 8] does not allow postconditions to be spec-
ified, though preconditions are verbally stated. The input
language is limited to a structured fragment of English. An
example of the required input is, “Environment with initial
conditions ∅. You start in r1 [a location] with initial con-
ditions ∅. Go to {r1, ..., r2} infinitely often. Call Medic iff
Person is found. Call Fireman iff Gas is detected.”

[10] allow operators to specify an action, such as grasp

the doll, and its stated effect, be grasping the doll.
This corresponds to the following instruction: until agent
x senses that it is grasping the doll, agent x should continue
to perform a grasping action on the doll. However, the in-

struction has to be presented with a specific input structure:
“Until you are grasping D; Holds you should grasp object D,”
which is then translated into a formal procedural description
that allows the specification of preconditions but not post-
conditions. The formal language into which the commands
are translated does list effects, but these effects are stopping
conditions, rather than, as in our method, propositions that
become true upon performing the action sequence.

Each of these projects addresses important aspects of ac-
tion learning. However, a more comprehensive capability
to, at run time, integrate knowledge learned via natural lan-
guage at all levels throughout the architecture is necessary
before robots will be able to, for example, use natural lan-
guage input to update the planner’s knowledge and even
underlying assumptions. Robotic architectures must be de-
veloped that allow for flexible actions and plans, based on
new knowledge derived from flexible natural language in-
put. This necessitates the ability to expand concept knowl-
edge both within the planner (e.g., new action concepts that
are made available) and within the robot’s dialogue module.
In this paper, we describe a method of explicitly defining
new actions, including pre- and postconditions, using natu-
ral language in a way that allows the robot’s reasoner to be
updated, making new capabilities available at run time.
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Figure 1: Architecture overview.

2.1 System Overview
Figure 1 provides an overview of the DIARC architecture

used below. In particular, it shows the tight integration of
the dialogue module and the planner with the goal man-
ager. The goal manager maintains a database of procedural
knowledge (i.e., actions that the architecture is capable of
performing, along with their pre- and postconditions and
information about the types of entities that could be en-
countered; [15]). The goal manager attempts to ensure that
progress is made toward the achievement of all of the agent’s
goals by collecting information from the sensor servers and
dispatching commands to the effector servers as required.
Actions for multiple goals can execute in parallel, however,
when resource conflicts arise, they are mediated in favor of
the goal with the highest priority.

When the dialogue module determines that speech input
consists of a command, a new goal is generated to carry out
the command and submitted to the goal manager, which



provides updates on the state of that goal as needed. Simi-
larly, when a new action definition is distilled from natural
language input, the dialogue module submits the new ac-
tion to the goal manager, making it available to the goal
manager from that point on. Natural language processing is
described in greater detail in Section 3.

The planner’s domain is initialized at system start-up by
the goal manager, based on the contents of its knowledge
base, ensuring that the planner has the most up-to-date in-
formation about the robot’s capabilities. Moreover, because
the planner can accept run-time updates, the domain can
be augmented by newly-learned actions that can be used
to improve subsequently-generated plans. Similarly, as the
robot interacts with the world, the planner receives notifi-
cation of state updates (e.g., external world states obtained
from sensors, internal states such as sub-goal completion)
from the goal manager; if an update triggers replanning, the
new plan is returned to the goal manager in the form of an
action script that can be directly executed to achieve the
associated goals. The planning component is described in
greater detail in Section 4.

This architecture is designed to enable the augmentation
of a robot’s capabilities at run time in response to operator
input. For example, consider a search and rescue scenario
in which a robot is searching a building that is unsafe for
human exploration. Instead, the robot communicates with
a human operator via a wireless link-up. At the beginning
of the exploration task, the robot understands that it should
enter any rooms it encounters as it traverses a hallway, and
its procedural knowledge base includes an action sequence
that will enter a room through an open door. Furthermore,
its opportunistic planner, upon receiving a state update in-
dicating a newly-discovered open doorway, produces a new
plan to enter and search the room before continuing to ex-
plore the hallway. However, state updates regarding closed
doors do not result in plans to enter and search rooms, as
there is no known action sequence that will lead to the robot
being in the room given the “closed door” precondition.

What if, during the search operation, the human operator
is informed that the building’s doors are all designed to un-
latch when the fire alarm is triggered? In that case, the robot
should be able to push the doors open, allowing it to search
rooms behind closed doors. Without the ability to learn new
actions via natural language and propagate that knowledge
through the architecture, the operator is faced with a choice.
The robot could be allowed to continue searching only rooms
with open doors—but those could be the very rooms that
are most likely to have been evacuated already. Or the ar-
chitecture could be shut down while the operator adds that
information and any associated actions to the robot’s pro-
cedural knowledge base—but that would cost valuable time,
and also assumes that the operator has the skills necessary
to reconfigure the robot in this way.

Our solution, in contrast, allows the operator to trans-
mit the information to the running system via natural lan-
guage, associating appropriate pre- and postconditions with
a previously-known action (initially applicable only in other
contexts): “If you are at a closed door and you push it one
meter, you will be in the room.” The new information can be
given by an operator with limited knowledge of the details
of configuring the architecture and integrated with little or
no delay, allowing the robot to search the rooms where it is
most likely to find victims.

This motivating example will be used throughout the re-
mainder of the paper, as we describe the unique features
of the architecture that make it possible: sophisticated nat-
ural language processing capabilities, and an opportunistic
planner that can accept world model updates, in addition to
state updates, at run time.

3. NATURAL LANGUAGE PROCESSING
In this section, we describe the robot’s dialogue module.

For descriptive ease, it is described in a modular, sequential
manner; in fact, however, all facets of processing occur in-
crementally and in parallel. At any time the module can be
queried for a completely-processed semantic representation
of the utterance as it currently stands.

In particular, this means that NLP and dialogue manage-
ment are done in a tightly-integrated fashion. As utterances
are recognized, mentions of entities are tracked, allowing in-
cremental referent grounding. Other discourse information
that is tracked includes, for example, points of confusion for
the system, such as unknown words and utterances that do
not fully describe the desired action.

NLP utilizes a number of initial knowledge sources, in
particular, a dictionary containing primitives that can be
combined into complex forms; an annotated corpus to train
the syntactic parser; and optionally a database containing
contextual knowledge (e.g., about interactions between en-
tities). Entries in this database are represented in the same
way as are semantic representations produced by the dia-
logue module (and perceptual modules such as vision) so
that the database could in principle be built entirely from
things the robot is told or is able to learn.

To demonstrate key steps of the process, we describe here
how the dialogue manger handles the example sentence, “if
you are at a closed door and you push it one meter, you will
be in the room”. The goal of semantic processing for this
sentence is to identify the action definition, preconditions,
and postconditions. Specifically, we must correctly segment
the natural language input as follows:

preconditions you are at a closed door

action definition you push it one meter

postconditions you will be in the room

We will first describe reference and anaphora resolution, and
then parsing, which produces a literal semantic representa-
tion. The final subsection will describe semantic manipula-
tion in accordance with real-world principles known to the
robot. After that, we will describe how the new action is
given to the goal manager.

3.1 Reference Resolution
Each time a discourse entity (currently identified by the

existence of a noun or a pronoun) is encountered during sen-
tence processing, an object is created to hold all information
about that entity. Each object may represent an indepen-
dent entity, or may be reference to another entity, indicating
that the two entities corefer. For example, when an indefi-
nite phrase “a closed door” is encountered, an object is cre-
ated that holds the information that it represents an entity
of type door which exhibits the property closed. According
to the determiner “a” this object represents an independent
entity, which is first asserted to exist in this statement (i.e.,
it must not refer to a previous discourse entity).



By contrast, when a definite phrase such as “the room”
is encountered, an object is created that holds the infor-
mation that it represents an entity of type room; however,
based on the determiner “the”, the entity must be a refer-
ence. This alerts the robot that it must locate some referent
(e.g., among previous discourse entities or by using its per-
ceptual modules). Anaphors such as pronouns are treated
similarly.

3.2 Parsing
As implied above, the goal manager requires a partial

parse, ideally with breaks between distinct phrases, in order
to integrate the new information into its knowledge base.
Such a parse is assumed, and is realistic only in the current
domain-limited context. In section 5.1, we briefly touch on
this issue when trying alternate phrasings of our instruc-
tion, but future work must explore ways of compensating
for a less-than-idea partial parse.

Given such a parse, the preconditions, action definition,
and postconditions may be derived from a variety of ver-
bal input frameworks such as: “if [preconditions are true]
if [action definition is performed] then [postconditions will
be true]”, “if [preconditions are true] and [action definition
is performed] then [postconditions will be true]”, or “if you
[action definition] when [preconditions are true] then [post-
conditions will be true]”.

For this reason, a dependency-based parser that uses
lambda calculus to produce semantic representations [3] is
trained on a set of phrases labeled as a precondition, an ac-
tion, or a postcondition. The phrases were extracted from
the CReST corpus [6] and manually modified. Each phrase
is returned as a pair comprising a semantic representation
and one of these labels. For example, the input “if you are
at a closed door and you push it one meter you will be in
the room” results in the list of labeled phrases:

entities door(x) ∧ agent(q) ∧Rs.object(s) ∧Rr.room(r)1

pre closed(x) ∧ outside(q, x)

action pushed(q, s, 1)

post in(q, r)

In other words, the robot has segmented the natural lan-
guage input into several distinct pieces of information. (1)
the entities under discussion include a door, an agent, an
ungrounded object s (which must be grounded in terms of
previous discourse entities), and an ungrounded room rep-
resented (which must be grounded in terms of previous dis-
course entities or the environment). (2) This action is rel-
evant only when the agent is outside the closed door (3)
from which position, if the agent pushes s 1 meter, (4) the
agent will then be in the room. The literal meaning of the
input has now been established, but some important infor-
mation is still missing. In particular, what object must be
pushed, and what room is the robot entering? The semantic
manipulation step provides the missing pieces.

1The operator R indicates that its argument is a reference
which must be grounded to a discourse entity, a real-world
entity, or a theoretical entity, an entity that the robot
infers must exist (e.g., if a door is mentioned a room must
exist because doors occur only in relation to rooms). An
entity of this type will be introduced in the next subsection.

3.3 Semantic Manipulation
Assumptions and gaps in the input sentence are ad-

dressed by consulting the background knowledge acces-
sible to the dialogue module, which includes the fol-
lowing: ∀x[door(x) → ∃y, z.room(y) ∧ location(z) ∧
doorconnected(x, z, y)] or“for each door, there exists a room
y and a space z that is connected to that room by the
door”. To be “outside a door” is to be in z, giving us
the following: ∀x[door(x) → ∃y, z.room(y) ∧ location(z) ∧
doorconnected(x, z, y) ∧ (outside(q, x) ↔ at(q, z))]. Logi-
cally combining this with the explicit semantics, we arrive
at:

entities door(x) ∧ agent(q) ∧ Rs.object(s) ∧ Rr.room(r) ∧
room(y) ∧ location(z)

pre closed(x) ∧ outside(q, x) ∧ doorconnected(x, z, y) ∧
at(q, z)

action pushed(q, s, 1)

post in(q, r)

Now the robot knows about the particular room y that is
connected to a location z outside the door, which allows an
agent at z to enter y. However, entities s and r remain unre-
solved. In this case, the sentence is a theoretical description
of an action and its consequences, so all entities need only be
grounded within the discourse, not in the real world. One
consequence of this is that entities that contain assertions of
existence such as “a door” need not be grounded. However,
if the sentence were an instruction/statement pair such as
“push a door 1 meter and then you will be in a room,” the
robot would need to ground “a door” to a single, perceivable
real-world entity in order to follow the instruction.

As described above, resolution is done by comparing what
is known about such a reference with what is known about
each independent entity and identifying those that are se-
mantically compatible. If this leaves several candidates, a
selection is made based on heuristics such as recency of men-
tion and parallel grammatical function. In this utterance,
there are two entities flagged for resolution. The first is the
pronoun “it”. In this case, only one object has yet been
mentioned, the door. Thus “it” can be resolved right away,
resulting in the following semantic representation:

entities door(x) ∧ agent(q) ∧ Rr.room(r) ∧ room(y) ∧
location(z)

pre closed(x) ∧ outside(q, x) ∧ doorconnected(x, z, y) ∧
at(q, z)

action pushed(q, x, 1)

post in(q, r)

The second reference, the noun phrase “the room”, refers to
an entity not found in the explicit content of the sentence.
However, as we saw above, the entity was implied. This
implication was made explicit through the inclusion of the
robot’s background knowledge of the world. Thus we resolve
r and arrive at:

entities door(x) ∧ agent(q) ∧ room(y) ∧ location(z)

pre closed(x) ∧ outside(q, x) ∧ doorconnected(x, z, y) ∧
at(q, z)

action pushed(q, x, 1)

post in(q, y)

These parts can now be assembled and sent to the goal man-
ager as described next.



3.4 Submitting the New Action
The new capability is introduced into the goal man-

ager via a method call: associateMeaning(action defi-

nition, preconditions, postconditions). This tells the
goal manager that it needs to associate a particular action
sequence (the action definition) with the given precon-

ditions and postconditions. Note that in this case, as in
many others, there are other postconditions, or side effects
(e.g., the door will be open), but for the current example, if
we have entered the room, the fact that, out of all potential
ways the room could be entered, it happened to be through
the mechanism of opening a closed door, is not explicitly
treated.

Once the goal manager has processed the new capability,
it can be used in response to subsequent requests by the
operator, and also presented to the planner. We describe
how the planner utilizes this information next.

4. PLANNING CAPABILITIES
An indispensable requirement in supporting a flexible dia-

logue module on a robot is a robust planner that can handle
changes to the world model and the problem at hand, and
re-plan taking these modifications into account. If the hu-
man specifies (during execution) that the agent must push
the door to a room in order to enter that room, the robot
must be in a position to understand the implications of that
directive. If there are goals that can only be achieved by en-
tering that room, the robot must update its understanding
of the world and infer that the new capability now allows it
to achieve those goals. It is these tasks that are performed
by the planner: (1) the task of updating the robot’s model
of the world and understanding the implications of those
changes, and (2) processing changes to the facts and goals
in the robot’s knowledge.

We employ the Sapa Replan [4] planner, an extension of
the metric temporal planner Sapa [5]. Sapa Replan is a
state-of-the-art planner that can handle actions with costs
and durations, partial satisfaction of goals and changes to
the world and model via replanning. Of these, the most
relevant to the problem of dynamic natural language input
is the ability to model and use changes to the world to the
robot’s advantage. The planner is mainly concerned with
two such changes: changes to the world facts and the prob-
lem at hand currently, and modifications to the overall model
of the world that the robot is using.

4.1 Changes to the Model
The planning model is an abstraction of the dynamics of

the world and is used by the planner to guide the robot in its
pursuit of the various goals assigned to it. The constituent
components of such a model are usually the types of ob-
jects in the agent’s world, the predicates that describe the
relationships between these objects, and the actions avail-
able to the agent. An initial model is made available to the
planner (and hence the robot) along with a description of
the world (described in section 4.2). Changes to this model
are generally harder to process than changes that are re-
stricted to specific facts, since they involve the modification
of several facts that are distributed throughout the planner’s
knowledge base. Additionally, verifying the consistency and
correctness of an executing plan—a non-trivial task at best
when facts about the world are changing—is rendered even

more difficult by the extensive role that the model plays in
the process of plan synthesis.

Unlike changes to facts in the world that can either be
discovered by the robot’s sensors or specified by a human
in the loop, changes to the model are more likely to be en-
tirely specified by human operators using natural language.
One reason for this is the fact that such updates are much
more complex and often invoke the robot’s capabilities and
the dynamics of the world’s evolution. Examples of utter-
ances that force updates to the model include, for example,
statements that give new information about how entities in
the world are interrelated and how the robot should inter-
act with real-world entities, such as the directives produced
by naive human users in Section 5. These are additional
capabilities that are being specified to the robot during ex-
ecution, and they may result in a change in achievability as
far as the current goals to be fulfilled are concerned.

Currently, such directives are supported in the planner by
modifying the planner’s knowledge base. A reference to the
concerned action2 is given and the new capability is added
to the effects of that action. The planner process is then
restarted and the search for a new plan begins, since the
added capability may have altered the reachability of some
goals. We demonstrate in the following section that, in the
example scenario, this method is sufficient to achieve our
current goals. When considering the problem of plan valid-
ity under modifications to the planning model in general,
though, the system may either replan from scratch, or up-
date and re-use the current plan.

Replan from Scratch: Given a new version of the do-
main model (with updates), the planner runs again in order
to come up with a plan that completely replaces the cur-
rently executing plan. This is the approach that we employ
currently.

Plan Re-use: The planner analyzes the current plan with
respect to the updates received and adds, removes, or up-
dates an action.

The addition of an action to the domain does not affect
the validity of the current plan. Other metrics associated
with the problem may change, since a new plan may now
be available, but no change is necessitated if a sufficient
plan is already executing. Likewise, the removal of a non-
participating action (i.e., an action that does not participate
in the currently executing plan), no change is necessary.

However, removal an action that does participate in the
currently executing plan is a more complex case, and re-
quires a detailed analysis of the sub-goals (and top-level
goals) that the action supports, and the nature in which
its removal will affect those goals. Similarly, when parts of
an action are updated (addition or deletion), a more com-
plex analysis of the various commitments entailed by the
currently executing plan is required.

While a full analysis of these methods followed by a se-
lective implementation of the best approach is work for the
future, the effectiveness of the current approach is demon-
strated in the next section.

4.2 Changes to the World
Dynamic environments like search and rescue also have a

stream of constantly updating information about world facts

2For this work, we restrict our attention to directives that
expand on the robot’s capabilities, and that are associated
with a particular action.



associated with them. This information is quite distinct
from changes to the overall model, since it is specific to
that particular instance and the state of the world at the
current instant. Any agent that seeks to effectively achieve
a given set of goals in such conditions must be in a position
to process and take advantage of this information. Agents
that are unable to do so run the risk of executing plans that
are no longer valid for the given circumstances. Knowledge
about these changes can come from two main sources, as
mentioned previously: the first is through the robot’s own
exploration of the world, and the feedback received via its
sensors; the other is through natural language (i.e., human-
issued knowledge and directives). The planner must take
these changes into account and ensure that the plan that is
currently being executed remains valid and effective. If this
ceases to be the case, the robot must replan, taking into
account the new knowledge and any changes to objectives,
and pass a new plan for execution on to the agent.

The Sapa Replan planner that directs the robotic agent is
comprised of two main components – the execution monitor
and the planner – working in a tight loop. The planner re-
ceives the initial state information and goals and dispatches
a plan to the monitor that is sent to the robot for execu-
tion. The monitor then listens in for updates from the world,
which can be generated from either of the two sources men-
tioned previously. In particular, updates can include new
objects, timed events, goal additions or modifications, and a
new time point from which execution is expected to resume.
The update syntax is as follows:

(:update
:objects

red3 - room
:events

(at 125.0 (not (at red2)))
(at red3)
(visited red3)

:goal (visited red4) [500] - hard
:now 207.0)

These problem updates cause the monitor to interrupt
the planner and restart it after updating the internal prob-
lem representation. However, handling the arrival of new
goals that are contingent upon objects and facts initially
unknown to the agent is a challenge for most modern auto-
mated planners. This is due to the fact that planners as-
sume a closed world and model at the outset—that is, they
expect full knowledge of the initial state and the model of
the world, and up-front specification of all goals. Informa-
tion that is left unspecified initially is assumed to be false in
order to gain closure over the knowledge about the world.
Instead of this, what is required is a way to exclude certain
classes of objects from this closure requirement, and a way
to specify additional information about such objects (such as
goals associated with them). To this end, we extended Sapa

Replan with the concept of Open World Quantified Goals
(OWQG) [17] which are constructs that provide a compact
way of specifying conditional reward opportunities over an
open set of objects.

For example, a human commander may assign the robot a
soft goal of reporting the location of all injured humans, with
the additional information that these injured humans may
be found inside rooms. Such a directive would be translated
to an OWQG using the following syntax:

Figure 2: A Videre ERA equipped with a USB
web-cam, a Hokuyo Urg laser range-finder, a mi-
crophone, and a quad-core Linux PC for onboard
processing exercising its newly-acquired capability
of opening closed doors to look for red boxes.

(:open
(forall ?r - room
(sense ?hu - human
(looked_for ?hu ?r)
(and (has_property ?hu injured)

(in ?hu ?r))
(:goal (reported ?hu injured ?r)

[100] - soft))))

While space does not allow a full exposition of the syn-
tax and the manner in which OWQGs are handled by the
planner, additional information may be found in [16].

5. DISCUSSION
The natural language processing and planning capabili-

ties described in Sections 3 and 4 were implemented and
tested on the robot shown in Figure 2 in a scenario simi-
lar to the one described in Section 2 (see the video at The
video at http://www.youtube.com/watch?v=NEhBZ205kzc).
The search target in the demonstration is a red box and
a microphone is used instead of radio communication, but
otherwise the demonstration is faithful to the original moti-
vating example. Sphinx 4 was used for speech recognition.3.

Although this example demonstrates that the architecture
is able to learn the action and use it for problem-solving, it
is clear that to be of general use, the robot must be able to
learn more than one action. Furthermore, examples pro-
duced by researchers intimately familiar with the details
of their own systems, while instructive for demonstrating
the robot’s operation, are necessarily informed by detailed
knowledge of the system, so it is unclear how widely success-
ful even this single example would be given an uninitiated
user. Therefore, in this section we first discuss the system’s
inherent general scalability (i.e., to different action descrip-
tions), then investigate how successfully the robot is able to

3http://www.cmusphinx.org



handle the types of natural language instructions produced
by naive users for this particular example using the results
of a preliminary pilot eliciting natural language input from
a small sample of untrained users.

5.1 System Scalability
So far, only one example has been presented. However,

several facets combine to contribute to the system’s scalabil-
ity to other scenarios. In particular, the dialogue module is
characterized by the ability to scale up to larger domains due
to three key features. First, the parser is trainable from an-
notated data. Second, given an initial set of primitives, new
terms describing complex combinations of these primitives
can be learned and added to the dictionary. Third, parses
often fail around certain predictable points such as conjunc-
tions. These points can indicate, among other things, phrase
breaks, allowing a parser’s weak point to be used to produce
a more flexible set of of processable input types. These char-
acteristics combine to contribute to the dialogue module’s
extensibility, producing the ability to successfully analyze
the semantics of new natural language input.

Moreover, the interface via which a new capability is sub-
mitted to the goal manager is flexible enough to accept a
wide variety of definitions, requiring only the basic elements
described in Section 3: the action description, a (possibly
empty) list of preconditions, a list of postconditions (or ef-
fects) of the given action sequence, and (optionally) a name.
Those elements are sufficient to make the new capability
available for use by the goal manager, and to allow it to
forward the information to the planner.

Finally, Sapa Replan’s flexible mechanisms for defining
new domain elements make it possible to update the world
model at run time with any construct that would be per-
missible at system start-up. This, combined with a design
that allows it to respond to changes to the world, ensure
that any newly-learned capability can be injected into the
running planner and used to improve subsequent plans.

To test this scalability, we tried a variety of different
phrasings on the same instruction. Simple changes such as
alternating conjunctions (e.g., “if”replacing“and”,“then”re-
placing null) and reordering information (e.g., “if you push
a closed door one meter when you are at it then you will
be in the room”) worked easily. A resolution error arose
with “to go into a room when you are at a closed door push
it one meter” — “it” was incorrectly found to be corefer-
ent with “room”. Similar errors will be corrected with more
fine-grained semantic knowledge of object types.

Next, an assortment of disfluencies were tried. “Uh” in-
sertion in a variety of locations (e.g., between prepositional
phrases and their head verb, between object phrases and
their head verb) posed little problem. One case resulted in
a failure to attach “closed” to “door” (i.e., the system would
not understand this instruction is needed only when the door
is not already open). Repetition of non-content words (e.g.,
“to uh to go”) was also unproblematic, with the repetitions
left unattached. Repetition of content phrases was slightly
more problematic. “Push it uh push it one meter” resulted
in two sequential steps, “push it” and “push it one meter”
being added to the instructions.

However, even though these examples were constructed
after the system was designed (i.e., they had no effect on
the design of the system), they likely are not representative
of the kind of language naive users would produce. In the

Table 1: Naive users instructions to Gogol.
continue forward X
detect a closed door push on the door and enter X
open the door X
go straight into the door and keep pushing
go up to a wall and push on it X
um you need to push on the door to make it open
push the door open X
if you detect a closed door push on it X
when you think you’ve hit a wall push on it X
push on every wall you find

next section, we elicit language from naive users.

5.2 Naive Subject Evaluation
Because several aspects of any NLP system are heavily re-

liant on phrasing, it is important to understand what type of
natural language naive users produce if we want to evaluate
the general applicability of the system.

As a pilot study, a small sample of naive users (10) were
shown diagrams depicting Gogol, a non-humanoid robot,
as it navigates a hallway searching for blocks. The users
were told that Gogol is able to sense both open and closed
doors. To maintain consistency with the demonstration run,
“closed” doors are actually depicted slightly open and sub-
jects were told that Gogol considers them “closed”. They
were then told, “Unbeknownst to him, if he detects a closed
door, he can push on it. Besides moving him into the room,
this action moves the door into a position that Gogol consid-
ers ‘open’.” Subjects were then instructed to“tell Gogol how
to go into rooms with closed doors”. The instructions did
not explicitly state that Gogol did not know the meaning of
the verb “open”, only that he did not know how to perform
the action. “Open” was not used as a verb anywhere in the
description of the scenario or the instruction.

Users responses are shown in Table 1. The dialogue mod-
ule correctly parsed seven of the ten responses. Most of
the resulting instructions were syntactically simple, with
only two users making use of more than simple imperatives.
While all instructions included an action or series of actions
only half included something identifiable as a pre- or post-
condition. All instructions assumed the action “push” did
not require a distance or any explicit stopping point (i.e.,
no one told Gogol how far or long to push or when to stop).
Most problematically, some responses suggested that their
speakers held incorrect assumptions about the robot, in par-
ticular a lack of trust in the robot’s ability to detect closed
doors. In the case where the robot was instructed to push on
“every wall [it] finds”. the robot may find that it follows in-
structions perfectly, but still is unable to complete its goals
in a timely manner.

In short, it is clear that in its current state, the system is
unlikely to work with completely naive users, as they don’t
understand the key elements that a robot needs to integrate
and use a new command. For scenarios such as the one
envisioned here, this is probably not a fatal shortcoming,
as search and rescue robot operators can reasonably be ex-
pected to receive training that affords them a level of famil-
iarity sufficient to understand the relevant issues without,
requiring that they have a developer’s view of the architec-
ture. On the other hand, the capabilities described here



could also be of great general utility as robots become in-
creasingly common in our society. The results of this small
user study suggest that this will require substantial improve-
ments to the architecture.

6. CONCLUSIONS AND FUTURE WORK
We presented a robotic architecture featuring a planner

that uses discovered information to produce new and up-
dated plans. The robot can learn action sequences with
defined pre- and postconditions from natural language de-
scriptions, and immediately apply this knowledge to improve
planning. We demonstrated a successful real-world imple-
mentation on a physical robot and showed that the system
is scalable to a large set of possible inputs, but found that
it is unable to handle input from naive users with limited
understanding of the robot’s capabilities. In addition, we
noted limitations in the planner’s update process.

As the initial evaluation revealed, naive users are not nec-
essarily effective at providing sufficient information to fully
specify the learned action sequence; additional mechanisms
will likely be required to successfully deploy the architecture
for use with the general public. We are considering two ap-
proaches to this problem: detecting missing information in
operator descriptions during the natural language processing
phase so the robot can request clarification, and performing
a “mental” simulation with the new capability to determine
whether it seems likely to be effective in the real world.

When the planner’s world knowledge and/or model knowl-
edge is updated, the current plan is replanned from scratch,
which as previously described is not necessarily the most
effective method. Future work will include evaluating the
possible ways of deciding whether and how to reevaluate a
plan and implementing the most successful procedure.
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