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Preface 
 

The Demonstrations and Exhibits programme at ICAPS 2011 provides an opportunity for planning and scheduling 

researchers and practitioners to demonstrate their state-of-the-art implementations in action, allowing the 

community to experience the latest contributions while broadening the reach of novel methods in a relaxed social 

setting. 

In 2011, the programme goes along the lines of well-established antecedents, while retaining some specific 

aspects. In particular, the session is co-located with the Doctoral Consortium event to exploit a synergy between 

the two events and improve the possibility for the audience to witness novel and exciting ideas from young 

students as well as from established researchers and research groups. Furthermore, the award for the Best 

Demonstration is chosen, in 2011, through a ballot.   

 

The Demonstrations and Exhibits programme features twenty systems, ranging from deployed systems to research 

prototypes. Six of these systems were described in papers accepted to the main ICAPS conference; the remaining 

ones are either ad-hoc submissions to the Demo programme, or are related to works presented as part of ICAPS 

workshops. The twenty systems which are witnessed in the session, and in these proceedings, illustrate a wide 

variety of approaches, techniques and applications of planning and scheduling, spanning from tools that 

demonstrate the solutions to significant theoretical challenges to more practical and specific application-oriented 

tools aimed at real-world problems such as  ship scheduling, training military forces, handling user agendas, or re-

planning  satellite constellations. 

This proceedings of the 2011 Demonstrations and Exhibits programme contains abstracts and extended abstracts 

that describe the systems showcased. Systems described in papers presented in the main ICAPS conference are 

summarized here with abstracts; we refer to the conference proceedings for their full description. In addition to 

this proceedings, supplementary materials such as videos are found on the ICAPS website. 

 

We would like to thank the ICAPS Chairs, Malte Helmert and Stefan Edelkamp, the Program Chairs, Fahiem 

Bacchus and Carmel Domshlak, the Workshop Chairs, Blai Bonet and Amedeo Cesta, and all workshop organizers, 

who supported us in identifying interesting entries to the Demos programme.  We express our gratitude to all the 

people who helped raising the awareness of the event, to the Local Arrangement, headed by Gabriele Roger, and 

to the staff arranging and organizing the events in Freiburg. 

We hope that the Demonstrations and Exhibits programme provides its attendees lively and fruitful discussions 

which may motivate and eventually bring promising approaches to scheduling and planning from the laboratory to 

the real world. 

 

–   Piergiorgio Bertoli and Minh Do  

  Demonstrations and Exhibits Co-chairs 
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Abstract 
FlowOpt is a collection of modules built on top of enterprise 
performance optimization system MAK€ with the goal to 
bring unique modeling, optimizing, and visualizing 
capabilities for production workflows. FlowOpt is based on 
the concept of nested temporal network with alternatives 
used to formally describe alternative processes in 
workflows. The system supports visual design of nested 
workflows that can be connected with available resources in 
the enterprise. It then generates production schedules 
optimizing the on-time-in-full performance criterion. The 
obtained schedules can be analyzed to discover and “repair” 
inefficiencies of the enterprise. Finally, the schedules are 
visualized in the form of Gantt chart where the user can do 
any schedule modification interactively including selection 
of an alternative process or change of resource allocation. 

Introduction  
Though there exists a vast amount of research in the area 
of scheduling there is still a large gap between practical 
problems and research results especially in the area of 
production optimization for small and medium enterprises. 
This gap is partly due to missing modeling and 
visualization tools that would allow easy transformation of 
real-life problems to optimization models and the results 
back to customers (Barták et al. 2010) and partly due to 
large distance of academic algorithms from the existing 
problems. 
 FlowOpt project is a student’s software development 
project at Charles University in Prague (Czech Republic) 
that is used to demonstrate the recent research results in the 
areas of modeling and optimizing production workflows. 
The project was realized in close co-operation with an 
industrial partner, ManOPT Systems from Limerick, 
Ireland. This project is a unique opportunity as usually 
researchers and final customers are too far from each other 

to communicate directly the needs on one side and the 
possibilities on the other side. In the project we wanted to 
demonstrate the recent research advancements in the areas 
of formal problem modeling and solving, namely using 
Nested Precedence Networks with Alternatives (Barták and 
Čepek 2008) to describe workflows, in real-life industrial 
setting. FlowOpt is a collection of four modules built on 
top of commercial system MAK€ being developed by 
ManOPT Systems as a tool for enterprise performance 
optimization. In particular, FlowOpt consists of the 
Workflow Editor, the Scheduler, the Gantt Viewer, and the 
Schedule Analyzer. These modules deal with creating, 
managing, scheduling, optimizing, and analyzing 
manufacturing processes for (small to medium) enterprises. 
The general purpose is to provide a streamlined feature 
rich environment where the user could do all of the 
following in a simple, efficient and user-friendly way: 

• Specify how a particular product is manufactured 
(i.e. define a workflow describing the 
manufacturing of a single product). 

• Enter a work order from a customer – customers 
request certain quantities of products that the 
factory can manufacture, together with a desired 
deadline.  

• Generate a schedule for the order – a schedule 
should be a complete description of what 
elementary activities should be performed, in what 
exact times should they run and what resources 
should they use (machines or people). Executing 
such a schedule should result in efficient fulfilling 
of the work order. 

• Display the generated schedule in the form of a 
Gantt chart and modify it interactively. 

• Analyze the generated schedule for possible 
opportunities of improvement. 
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FlowOpt Architecture 
FlowOpt modules are implemented as plug-in modules on 
top of MAK€ system which provides all integration 
capabilities. MAK€ contains a database where information 
being passed between the modules is stored, it also adds 
some modeling tools, namely for description of bill of 
materials, resources, time windows, and custom orders and 
it does some data integration, namely connection of 
abstract workflows with particular data regarding custom 
orders. MAK€ is a fully-featured product that already 
provided workflow editor, scheduler, and Gantt viewer. 
The FlowOpt modules are used as alternatives there with 
the focus on specific structure of workflows – nested 
precedence networks with alternatives. 

FlowOpt Workflow Editor 
Workflow Editor is the first module the user is exposed to. 
This module allows users to create and modify workflows. 
Workflow is a basically a set of activities connected via 
temporal constraints. We adopted the idea of nested 
precedence network with alternatives (Barták and Čepek 
2008) to specify the workflow structure. Briefly speaking 
the initial workflow consists of the single task to achieve 
some goal and the user specifies how to decompose the 
task into sub-tasks until real operations/activities are 
obtained. Three types of decompositions are supported 
(Figure 1), either the task is decomposed into a sequence of 
sub-tasks which forms a serial decomposition or the task is 
decomposed into a set of sub-tasks that can run in parallel 
– a parallel decomposition – or finally, the task is 
decomposed into a set of alternative sub-tasks such that 
exactly one sub-task will be processed to realize the top 
task – an alternative decomposition. The module supports 
fully interactive construction of workflows with both top-
down method of constructing workflows by the 
decomposition operations and the bottom-up method where 
existing workflows/tasks are joined in a similar style. 
When the structure of the workflow is defined the user can 
fill the most inner tasks by real activities and can define 
required resources for these activities. All these operations 
can be realized in drag-and-drop style. 

Figure 1: Visualization of nested workflow in FlowOpt Workflow 
Editor (from top to down there are parallel, serial, and alternative 
decompositions) 

 In addition to core nested structure that is exploited 
during scheduling it is possible to specify additional 
relations between the activities going beyond the nested 
structure. In particular, the user can specify additional 
precedence relations between any pair of tasks which 
means that if both tasks are selected in the solution then the 
specified ordering must hold. The system also supports 
synchronization constraints so it is possible to describe that 
two tasks start or end at the same time or that one task 
must start exactly when another task finishes. Currently we 
do not support more general temporal constraints as the 

above constraints seem enough for most production 
workflows. We however support special logical relations 
between the tasks, namely implication, equivalence, and 
mutex relations which allow the users to describe some 
causal relations between the tasks going beyond the nested 
(hierarchical) structure. Basically, these logical relations 
restrict which activities can/must appear together in the 
schedule, for example, mutex relations mean that both 
tasks/activities cannot appear together in the schedule. 
These logical relations are novel in scheduling though they 
are frequently used in planning. We believe they will 
further simplify modeling of real-life problems, but further 
evaluation from customers is necessary.   

FlowOpt Scheduler 
When the workflow is described, it must be filled by 
particular data from custom demands. This integration is 
done by the MAK€ tool using the techniques presented in 
(Barták et al. 2010). A complete description of the 
scheduling problem that contains activities organized in a 
nested structure, specification of required resources, and 
description of deadlines is passed to the FlowOpt 
Scheduler. We use the idea of optional activities so the 
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Figure 2: A task view in the FlowOpt Gantt Viewer. It displays the hierarchical structure of nested workflows, shows the additional constraints, and 
highlights the violated constraints. 

system is doing some form of integrated planning and 
scheduling where activities used to satisfy the demands 
must be selected from the alternative processes and then 
allocated to time and resources. We use ILOG CP 
Optimizer to achieve this task as it already supports 
optional activities (Laborie and Rogerie 2008). To solve 
the scheduling problem we exploited only the existing 
constraints in CP Optimizer and its built-in search strategy, 
no special solving algorithm was developed. The result of 
scheduling is identification of selected activities that are 
allocated to precise time and required resources.  The result 
from the Scheduler can go directly either to FlowOpt 
Analyzer or to FlowOpt Gantt Viewer. 

 FlowOpt Analyzer 
FlowOpt Analyzer is probably the most innovative module 
in the FlowOpt system. It is responsible for analyzing an 
existing schedule and suggesting possible improvements of 
the enterprise such as buying a new machine. Note that 
these improvements are going beyond the analyzed 
schedule as they suggest how to change the enterprise 
rather than how to change the schedule only. The MAK€ 
system already includes schedule analyzer based on 
cumulative computing of certain key performance 
indicators such as utilization of resources or the number of 
late deliveries which are used to generate useful reports to 
the customers. The main difference from existing 
approaches in MAK€ is that the FlowOpt Analyzer does 
structural analysis of the schedule consisting of identifying 
critical activities (similarly to critical path detection) that 
cause delays of deliveries and finding a reason why these 
critical activities are itself delayed.  Based on this analysis, 
the system automatically suggests possible modifications 
of the enterprise such as adding a new resource or 
exploiting overtime. These so called improvement projects 
are then evaluated by the scheduler simply by finding a 
new schedule after the modification and comparing quality 
of the new schedule with the quality of the original 

schedule. During the evaluation some inter-relationships 
between the improvement projects are also identified. All 
obtained information is then used in standard project 
portfolio optimization which will select a subset of most 
promising improvements. 

 FlowOpt Gantt Viewer 
FlowOpt Gantt Viewer stands at the end of the modeling 
and solving process. As expected this module is 
responsible for visualizing schedules in the form of a Gantt 
chart. There are two major innovative ideas behind the 
Gantt Viewer. First, the module fully supports 
visualization of the nested structure of scheduled 
workflows including not-used alternatives. Second, the 
module allows interactive modification of schedules so the 
user can do fine tuning of the schedule. This interactive 
modification is similar to work (Barták and Skalický 2009) 
though automated schedule repair is not yet supported. 
 The Gantt Viewer allows both typical views of the 
schedule: a resource view that is useful to show occupation 
of individual resources (Figure 3) and task view showing 
the hierarchical structure of workflows together with time 
allocation (Figure 2). The task view provides visually more 
information as it shows not only the scheduled activities 
but also the non-selected alternatives and all these 
additional constraints between the activities as defined in 
the workflow editor. Moreover, the tool supports any 
modification of the schedule so users can change time 
allocation of tasks as well as resource allocation. This is 
realized by intuitive drag-and-drop operations. Users can 
also select alternative tasks if they are not happy with the 
choice of the automated scheduler. In such a case, the tool 
removes the previously selected alternative from the 
resources. Some other features are supported such as 
banning the resource so it cannot be used for activities or 
pinning the activity so it remains at the specified position. 
After manual modifications, the system highlights possible 
violated constraints though it does not repair them yet. 
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Figure 3: A resource view in the FlowOpt Gantt Viewer. It displays allocation of activities to individual resources. 

 The most novel part of FlowOpt is Schedule Analyzer 
that explores an existing schedule, detects possible 
inefficiencies, and suggests how to improve the quality of 
schedules by modifying the enterprise. We plan to extend 
this module to detect more inefficiencies and to suggest a 
wider spectrum of so called improvement projects. Also 
we assume a deeper integration with the Optimizer where 
the Analyzer can provide additional information for 
generating new schedules such as estimating where the 
bottlenecks appear. 

Conclusions and Future Development 
The MAK€ application has had a total of 15 years of use in 
five actual differing production facilities for example to 
schedule production of pistons or wooden doors. It uses a 
scheduling algorithm based on preferred routes specified 
by the users and some experiments were done with generic 
scheduling engine based on the constraint-based 
technology. The goal of the FlowOpt project is to test 
novel modeling techniques such as the nested structure of 
workflows and novel solving techniques such as using 
ILOG CP Optimizer. FlowOpt is not yet operational. 

Acknowledgements  MAK€ with its FlowOpt extension is under continuous 
development driven by both customer requirements and 
novel research results. Three major extensions are planned 
for near future. 

The research is supported by the Czech Science 
Foundation under the contract P202/10/1188 and by EU 
Funding Scheme Research for the benefit of SMEs: FP7-
SME-2007-1 under the project ValuePOLE (contract 
222218). 

 The Workflow Editor provides unique capabilities for 
hierarchical description of workflows with additional 
temporal and logical constraints. These additional 
constraints may introduce infeasibilities to the workflow, 
for example when the user wants to synchronize some 
activities, which may be impossible due to other temporal 
constraints. We are working on developing automated 
validation of workflows that can discover such 
infeasibilities and suggests the user how to remove them. 
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Abstract

This paper shortly introduces features of a software system
called PANDORA-BOX. 1 It shows a novel use of timeline-
based planning as the core element in a dynamic training en-
vironment for crisis managers. A trainer is provided with a
combination of planning and execution functionalities that al-
low him to maintain and adapt a “lesson plan” as the basis for
the interaction between him and the involved trainees. The
training session is based on the concept of Scenario, a set
of events and connected possibilities that shape an abstract
plan proposed to trainees through a timeline-based system.
The PANDORA architecture provides a continuous reactive
loop around trainees, and, additionally allows the trainer to
directly intervene in the ongoing session giving him a com-
plete, general and advanced view about the evolution of the
Scenario.

Introduction
Goal of the PANDORA project2 is to study how to support
the training of crisis managers with innovative “ICT-like”
technologies. In particular the project aims at creating a tool
that corroborates with traditional training methods to gener-
ate the ability for trainees to react well to decision making
under critical situations.

Why. When a catastrophic event occurs, it is often human
behavior alone that determines the speed and efficacy of the
crisis management efforts. Indeed, all too often, shortcom-
ings in the response to the emergency do not stem from the
ignorance of procedures but from difficulties resulting from
the individual response to the challenge of operating in such
a context, particularly when additional unexpected problems
arise. Crisis management is of major importance in pre-
venting emergency situations from turning into disasters.

1For those curious about the paper title we quote a short mytho-
logical description from the voice Pandora’s box on Wikipedia:
“When Prometheus stole fire from heaven, Zeus took vengeance by
presenting Pandora to Prometheus, Epimetheus’ brother. With her,
Pandora had a box which she was not to open under any cir-
cumstance. Impelled by her natural curiosity, Pandora opened the
box-jar, and all evil contained escaped and spread over the earth.
She hastened to close the lid, but the whole contents of the jar
had escaped, except for one thing which lay at the bottom, which
was Hope.”

2http://www.pandoraproject.eu/

In recent years, poor management response to emergencies
has often resulted in critical situations. In critical circum-
stances, there is a tremendous necessity of effective leaders.
It is worth saying that the pressure of unexpected circum-
stances creates strong constraints on the abilities of leaders
to take decisions. For example, given the severe time pres-
sure imposed by the crisis, they have little time to acquire
and process information effectively. As a consequence, they
are required to assess information and making decisions un-
der tremendous psychological stress and physical demands,
often caused by the difficulty to operate in contexts where
consistent losses as well as damages both to human lives
and properties are occurring. Within this context training
plays a crucial role in preparing crisis managers. Specif-
ically, training for strategic decision making has to foster
leaders’ ability to anticipate possible consequences of bad
decisions and to conceive creative solutions to problems. In
this light experiential learning plays a crucial role.

What. The project is synthesizing a software environment
able to support a lesson of few hours with a class of trainees
that are exposed to a set of stimuli coming from an evolving
crisis scenarios customized to the particular training needs.
Key aspect in PANDORA is to create realistic responses to
the decisions taken by trainees by reproducing believable sit-
uations, grounded realistic domain causality for those deci-
sions to facilitate the development of a comprehensive range
of decision making skills. Additionally, the idea underly-
ing PANDORA is to take trainees behavioral features into ac-
count and plan training sessions tailored to individual differ-
ences and needs.

How. The starting idea for using planning within PAN-
DORA was connected to the synthesis of a “Lesson plan”,
that is an organized set of lesson’s items to be given to
trainees over a time span according to a learning strategy.
Additionally from the need of monitoring user status during
lesson comes the idea of representing also the user’s fea-
tures as temporal items, hence inserting also these data in
a uniform plan and using causal connections between dif-
ferent part of such plan to foster the continuous update of
the plan. A natural technology for all this has been identi-
fied in the timeline-based planning, an approach to temporal
planning which has been mostly applied to the solution of
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several space planning problems – e.g., (Muscettola 1994;
Jonsson et al. 2000; Smith, Frank, and Jonsson 2000;
Frank and Jonsson 2003; Cesta et al. 2011b; Chien et al.
2010). We have produced a first version of a comprehensive
architecture, called the PANDORA-BOX, that fully demon-
strates the feasibility of our approach. Central to the system
is its original use of planning to model a quite rich domain.
Specifically, planning is used (1) to compute diversified cri-
sis scenarios corresponding to alternative training paths to
foster creative decision-making, (2) to model and maintain
trainees’ behavioral patterns according to which training can
be personalized, (3) to support mixed-initiative interaction
between the trainer and the automated learning environment
relying on a high level of abstraction for the internal repre-
sentation. Here we describe PANDORA Year One Demo in a
quite broad way. For a more detailed description the reader
should refer to (Cesta et al. 2011a).

The PANDORA-BOX
Figure 1 describes the modules that currently compose the
PANDORA-BOX system. At the more external level three
are the main blocks of the current architecture:

1. the Trainer Support Framework which allows the trainer
to keep control of the training session by biasing the learn-
ing content steps with an abstract plan called Scenario,
dynamically adjusting the stimuli based on both his/her
experience and observation of the different trainees’ ac-
tions;

2. the Trainee Clients that according to a Client-Server com-
munication allow distributed trainees to join a class and
participate, also being able to receive both collective and
individual stimuli during the class;

3. the kernel PANDORA system, identified by the dotted
PANDORA-BOX in the figure, which is the main engine
that generates the “lesson plan”, animates it in an engag-
ing way and adjusts it on a continuous bases to keep peace
with both the evolution of the specific group of people un-
der training and their individual performance.

In the rest of this paper we describe main aspects of these
three blocks focusing in particular on the kernel because it
is there that planning technology is more deeply used.

Planning the Training Class
The basic connection with planning relies on the idea of
composing elements of the lesson through causal rules. In
PANDORA-BOX lesson’s content, e.g., different multi-media
assets, are represented as elements of a temporal plan, hence
the crisis plan is composed of different multi-media “mes-
sages” to trainees. Additionally, also all the background in-
formation, e.g., lesson strategy, trainee classification, evolu-
tion of crisis on-field resources, are represented as timelines
to take advantage of both the uniform representation and the
underlying technological functionalities. The combination
of such information is useful to decide particular orchestra-
tion of messages.

One of the key points of our representation of the plan is
the ability to adapt and update itself as a consequence of new

Figure 1: The PANDORA-BOX general architecture

information gathered from trainees during the ongoing les-
son. Each action done by both the Trainer and the Trainees
is figured as a trigger able to change the current running state
of the backbone Scenario created by the trainer. As a con-
sequence of this requirement, the system needs to activate
a re-planning procedure in a continuous cycle in order to
maintain the simulation consistent with taken decisions.

Timelines-based modeling. As usual in timeline-based
planning the basic indexing of domain knowledge is repre-
sented by timelines, that in generic terms, are functions of
time over a finite domain (Muscettola 1994). A single time-
line contains a set of tokens that we have called “events”
here due to the association with visible effects on the whole
played Scenario. Such events can have consequences in
terms of casualties, injuries, involved resources, etc. or sim-
ply represent information sent to single trainees. From a
technical point of view, an event is described through a pred-
icate holding over a time interval and thus characterized by
a start and an end time. According to this model, the do-
main of each timeline depends on the type of events that the
same timeline is going to represent. Furthermore, events can
be linked each other through “relations” in order to reduce
allowed values for their constituting parameters and thus de-
creasing allowed system behaviors. Generally, relations can
by represented by logical combination of linear constraints
among event parameters and/or temporal points. We call the
graph having events as nodes and relations as edges “Event
Network” and we say that it is consistent iff it respects a set
of consistency rules that we call “Causal Patterns”. A causal
pattern is a logic implication having a predicate signature as
implicant and a logic combination of timeline values and re-
lations as implicate. The semantic is that each node of the
Event Network having the implicant pattern as signature re-
quires the implicated pattern inside the Event Network.

The uses of plans. One aspect worth being observed in
Figure 1 is how the PANDORA system creates loops around
its human users. We can call the first one the the-trainee-
loop: Trainees receive stimuli, their decisions are registered
by the system and then reacted upon through plan adapta-
tion, before loop continuation. The starting point for plan
generation is the Trainer Support Framework because the
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trainer injects an initial Scenario (aka Abstract Plan) that
acts as a connected set of goals when represented at the
ground planning level. These set of goals triggers the ba-
sic planning activity of the Crisis Planner. The planner uses
both the domain causal patterns and the timelines inputted
by the Behavioral Reasoner with information on the sin-
gle trainees to create a complete consistent plan at ground
level that is ready for execution. The Behavioral Rea-
soner is the module responsible for both creating an initial
user model of the trainees and maintaining it updated ac-
cording to a continuous analysis of trainees decisions, and
other data (Cortellessa et al. 2011). Two additional mod-
ules compose the PANDORA-BOX and are connected to an
effective rendering of single events: the NPC Framework
and the Affective State Framework. The first makes avail-
able additional virtual characters to be functionally used
within the orchestrated events to influence trainees, the lat-
ter, at present, can be directly controlled by a timeline called
induced stress synthesized and updated by the Behav-
ioral Reasoner to generate diversified multi-media effect to
influence the engagement and the cognitive overload of the
trainees. The Executor is the main responsible for the dis-
patching of events according to temporal order. It is also re-
sponsible for gathering decisions coming from trainees after
selected stimuli and for forwarding them to the two mod-
ules that dynamically update the timeline plans (the Crisis
Planner and the Behavioral Reasoner).

There is a second human-in-the-loop case that we can
call the-trainer-loop: as shown in the figure this person ob-
serves what is happening in the class and can intervene on
the trainees either directly through simulated characters (the
Missing Players) and chat messages (not represented in fig-
ure), or indirectly by changing the Scenario and in so doing
posting new goals at the ground planning level. In general
the trainer has the possibility of just observing the lesson
flow and annotate the abstract plan representation or more
proactively taking part in the lesson or even interrupting it,
giving direct explanations, and resuming the plan-based les-
son. It is also worth saying that PANDORA provides an-
other instrument that allows the Trainer temporal naviga-
tion through the lesson plan. A Rewind functionality allows
to move the execution back in time providing two different
behaviors:

– default roll-back, intended for debriefing purposes, that
simply updates current simulation time t to desired target
value keeping untouched actions taken by trainees;

– heavy roll-back, intended to revert to a crucial decision
point at time t, removing each event representing trainees’
choices at time t′ > t, along with their consequences, in
order to allow a different simulation course.

It is worth saying that the roll-back is a functionality of the
Executor fully supported by the plan management machin-
ery provided by the timelines. For the sake of space we have
given a quite generic presentation of the PANDORA-BOX.
One comment worth being done is that also in this experi-
ence we have noted, in agreement with (Pollack and Horty
1999), how in real applications as important as pure plan
synthesis is the richness of services that can be developed
around plan management.

The PANDORA interactive environment. We close this
compact overview with a description of the functionalities
realized to interface real users. Figure 2 depicts some of the
interaction features in the current demonstrator. As direct
consequence of the choices in the architecture, the system
distinguishes between two types of interaction:

– trainer-system interaction, indicated as Trainer View,
which is related to the functionalities available to the
trainer to create a training session, monitor, edit it and
interact dynamically with the class;

– trainee-system interaction, indicated as Trainee View,
which is the interface through which the trainee can con-
nect to the PANDORA-BOX, receive stimuli and make de-
cisions about the critical situation.

Additionally we have a further view, called Expert View,
which is an inspection capability over the timeline environ-
ment and its execution functionalities.

Trainer View. This service allows to compose a training
class completing it with “missing players” to have a cov-
erage of institutional roles in crisis strategic decision mak-
ing. Created a class the trainer can load a Scenario, and
see it in tabular form with a series of important informa-
tion such as the execution time of each goal event and
who is the main recipient of information. It is worth high-
lighting how this representation is close to the current way
of working of the trainers and has been instrumental in
establishing a dialogue with them, before proposing any
kind of completely new solutions. Along with the sce-
nario, the interface also contains information about avail-
able resources to resolve the crisis and the consequences
of trainees’ decisions, both represented through resource
timelines and dynamically updated during the training.
The trainer is the one to have the basic commands from
executing the plan, stopping execution, resuming it and
rewinding. Furthermore, a specific requirement from user
centered design has been a set of plan annotation function-
alities plus a series of additional commands which allows
the trainer to dynamically add new stimuli, in perfect line
with the mixed initiative interaction style.

Trainee View. The Trainee interface contains three main
blocks, plus a number of features related to communi-
cation of each trainee with the rest of the class and the
trainer. The main building blocks are: (1) Background
Documents, which represents a set of information deliv-
ered off-line to the class in the form of maps, documents,
reports, in order to create awareness about the upcoming
exercise; (2) Dynamic information that represents the in-
formation dynamically scheduled and sent to the trainee
in the form of videos, maps, decision points etc.; (3) Main
Communication Window, which is devoted to display
stimuli (possibly customized) to individual trainees or to
the class.

Expert View. In parallel with the traditional tabular view,
the trainer can inspect the more advanced view of the
PANDORA module, that is the internal representation for
both the Crisis Planner and the Behavioral Reasoner. As
already said, all type of information within PANDORA is
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Figure 2: Screen shots of the current Trainer and Trainee Interfaces

represented as a timeline and continually updated (see dif-
ferent colors for timelines related to the crisis and the user
model in the Expert View). At this point, through the Ex-
ecute button, the trainer can start the session.

The interaction environment has been critical in our dialogue
with the end users and is going to further refined on the one
hand to satisfy user requirements on interaction, on the other
to make the advanced features more useful for the trainer.
Our goal is to fill the gap between the internal representa-
tion and users’ expectation, with the aim of promoting their
active involvement in the management of training.

Conclusions
A first prototype of the complete system has been produced
in early December 2010 while a first robust version of the
PANDORA-BOX has been officially demoed on March 2011
to the EU project officers during the mid-term project re-
view. This paper shortly introduces this year one demon-
strator. It is worth underscoring the important role of plan-
ning technology in the PANDORA-BOX.3 We have seen how
the representation with timelines is the core component of
the crisis simulation, and that a continuous loop of planning,
execution, plan adaptation is created to support personalized
training with Trainer in the loop.

Many improvements are scheduled in the remaining life-
time of the project. Just to give an idea, one of the next steps
is to provide a tool for Knowledge and Scenario Authoring
that allows incremental creation and/or editing of crisis Sce-
narios. Then, in order to achieve a high degree of realism,
stress and pressure, the use of a 3D environment will be ex-
plored with the purpose to render a Crisis Room with all
trainees together, even if for logistic reasons they are in dif-
ferent locations during the training.

3Going back to the title of this short paper: internal to our PAN-
DORA’s BOX (the .jar in the title), there is mostly knowledge
in terms of timelines and “simple” planning modules for planning
and executing them. Hence planning is our ... Hope!!!
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Abstract
We describe SHOGUN, a fully automated system for con-
trolling tactical agents, developed for integration within
simulation-based command and control training centers pro-
duced by Elbit Systems Ltd. In particular, we focus on
describing the action planning module of SHOGUN: while
controlling tactical agents in military-style domains involves
dealing with uncertainty and partial information in adversar-
ial settings, the planning module of SHOGUN is based on clas-
sical, deterministic planning only, and employs a general-
purpose classical planner. We describe our embedding of
classical planners within the commercial command and con-
trol training center, and report on a recent evaluation of
SHOGUN in operational scenarios, confronting subject mat-
ter experts as trainees.

Introduction
Comprehensive training of forces responsible to react in
complex adversarial situations is critical for military high
and low intensity conflicts as well as for homeland secu-
rity scenarios of border control and smart city environments.
Such a training should put together teams of trainees at var-
ious levels of command, and train them in realistic setups
to improve their command and control (C2) capabilities. A
vastly dominating portion of C2 training is delegated these
days to software simulation systems in which commands
of both role-playing trainees and adversary-playing instruc-
tors are accomplished by the respective computer gener-
ated forces (CGF). Following the paradigm of “train as you
fight”, the trainees are connected to the virtual battlefield
through their operational C2 systems and combat-net radio,
coupled by the overall training system to the simulation.

These days, commercial simulations for C2 training al-
ready achieve a sufficiently high level of realism in terms
of modeling the physical properties of both the environ-
ment and forces. The outcome of the training, of course,
depends a lot on the effectiveness of the instructors play-
ing the role of the adversary, and this turns out to be an is-
sue. Putting together a team of skilled and coordinated role-
players needed for a large-scale simulated exercise requires
months of costly preparations, availability of instructors for
a long period of time, and a suitable venue. These limi-

∗The work was partly funded by a Magneton Grant. The au-
thors would like to thank Yoav Manor and Gilad Mandel from Elbit
Systems for their devoted work on the project.

tations of relying on human instructors in simulation-based
training suggest at least partly replacing them with artificial
adversary-players implementing this or another action plan-
ning technology. Here we describe SHOGUN, a fully auto-
mated system for controlling tactical agents within a com-
mercial military training simulation. SHOGUN has been de-
veloped in a joint effort of Elbit Systems Ltd. and the Tech-
nion for subsequent integration within the line of large-scale
simulation-based training centers produced by Elbit. This
system has been recently deployed to Elbit, and successfully
passed a detailed performance evaluation.

An interesting property of SHOGUN is that the planner
it embeds is not just inspired by the artifacts of academic
AI research, but actually is such a direct artifact. More-
over, while in general controlling tactical agents in rele-
vant domains involves decision making under uncertainty
and partial information in adversarial settings, our experi-
ence provides yet more evidence that successful reasoning
about real-world systems of active entities does not neces-
sarily have to take explicitly into account all that complexity
when choosing between alternative courses of action. While
classical planning, capturing single-agent problems with de-
terministic actions and effectively full knowledge, has been
repeatedly criticized for being unrealistic and thus irrelevant
to real-world problems, here we demonstrate that this crit-
icism should be taken with lots of caution: The decision
making module of SHOGUN is based on classical, PDDL-
based planning only, and employs a general-purpose (and
thus fully replaceable) classical planner.

In what follows we describe our embedding of classical
planners within the commercial C2 training system, as well
as the way in which we divide-and-conquer the details of
the physical system between the planning and the simulation
modules. We then describe the aforementioned evaluation of
SHOGUN in operational scenarios, confronting professional
military personnel as trainees.

SHOGUN Architecture and Design Decisions
In this section we describe the overall architecture of
SHOGUN, focusing on the adopted planning and execution
formalism and its support within the system. At high level,
SHOGUN comprises a standard architecture of iterative plan-
ning, depicted in Figure 1a. It consists of three major mod-
ules: (i) a planning module, (ii) a plan execution monitor,
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input: planning task stub Π = 〈V,A,G〉
local: partial-order plan ρ
forever:

receive from EM the current state of knowledge σ and
plan status {ρdone, ρexe, ρnext}

s = TRANSLATE(σ,Π)
s′ = PROGRESSION(s, ρexe)
if VERIFY-PLAN(s′, ρnext) fails then
ρ = MAKE-PLAN(〈V,A, s′, G〉)
send ρ to EM(a) (b)

Figure 1: High-level (a) structure of the system, and (b) flow of the planner interacting with the KE abstraction mapping.
and (iii) a real-time high fidelity 3D tactical computer gen-
erated forces (CGF) simulation in which the actions selected
by both trainees and instructors are actually simulated.

Planning, Execution simulation, and Monitoring
The CGF simulation maintains the entire battlefield arena,
and supports an arbitrary number of force types (such as
tanks, artillery, reconnaissance, etc.), as long as the simula-
tion is provided with their respective physical models. The
simulation runs a full 3D virtual environment of the terrain
and physical models of sensors (such as line of sight and
detection) and actuators (such as ballistics, path planning,
and movement). The battlefield comprises two adversarial
forces, blue force and red force, each comprising a, possibly
heterogeneous, set of acting units. The trainees fully control
the blue force troops and interact with the virtual arena via
a training station using a high-level language of command.
The planning module replacing the instructors fully controls
the red force, and communicates with the simulation via ef-
fectively the same language of command. The control of the
red force is achieved via a planning and execution loop that
takes place during the entire training session. The overall
loop is described below and the perspective of the planning
module on that loop is pseudo-coded in Figure 1b.
• The execution monitor pulls from the CGF simulation all

the data σ required to provide the planner with the cur-
rent state of the red units (their locations, heading, am-
munition, etc.), as well as with those parts of the state of
the blue units that are considered by the simulation to be
observable by the red units. Status of the blue units not
detected by any red unit is not provided to the planner.
Likewise, the execution monitor pulls from the CGF sim-
ulation a status of the currently executed plan ρ of the red
force. Since the execution is continuous, at the moment
of the query some of the actions of ρ have been already
accomplished, some have started and are still executing,
and some are yet to be started. Note that “accomplished”
can stand here for both “successfully accomplished” and
“failed”. In any case, both the collected state of knowl-
edge σ and the plan status {ρdone, ρexe, ρnext} are passed to
the planning module.

• The CGF simulation is the core of the virtual arena of
Elbit’s strategic and tactical training centers, designed to
communicate with the training stations of human opera-
tors. Hence, the information σ about the current state of
the (observable) world takes the form of a raw data. This
raw data is then translated to a state of the world descrip-

tion s, corresponding to the abstraction of σ in terms of
the planning problem operated by the planner. This trans-
lation is based on a knowledge engineering layer that is
devoted to bridge between the physical view of the simu-
lation and the symbolic view of the planner.

• Given state s and plan status {ρdone, ρexe, ρnext}, the plan-
ning module estimates whether the current plan ρ of the
red force is still valid. In case the goal of reds turns out
to be unachievable from s along the still unaccomplished
part of ρ, a new plan is generated from the new initial state
s, and passed to the execution monitor.

Classical planner: Why and How.
The heart of SHOGUN is its planning system. The first deci-
sion we had to make is whether to develop a special-purpose
planner, or to adopt a generic, model-oriented planning sys-
tem. The second, and in a sense, tangential decision we had
to make was what details of the problem the planner should
take into account and what details it could ignore without
sacrificing the quality of the training.

While in principle special-purpose solutions can be more
efficient and effective than generic ones, their development
requires the enterprise to establish a development team in
the respective area of expertise. Along with the fact that the
development basically starts ”from scratch”, that adds nu-
merous risks to the project. Generic planners obviously do
not exhibit these risks by the virtue of being generic, having
potential to be reused between various verticals. Of course,
model-oriented generic planners come with their own risks
such as capability of the respective model to capture the de-
sired domain, the computational efficiency of the planner on
the domain of interest, etc. However, in contrast to the risks
associated with developing a brand new special-purpose sys-
tem, these risks can be verified in very short time at the be-
ginning of the project using an off-the-shelf planner.

Considering now the choice of the planning formal-
ism, decision making in C2 environments of our interest
always involves action non-determinism, partial informa-
tion, and adversarial settings (Wilkins and Desimone 1992;
Tate et al. 2000; Kott et al. 2005). A priori, this sug-
gests that our planning tasks should be specified in terms
of much more complicated action models than that of clas-
sical planning because the latter assumes deterministic ac-
tions, effectively full knowledge, and single-agent setting.
Adopting complex planning formalisms, however, comes
with a price: the performance of planning for such for-
malisms currently does not meet the requirements of large-
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scale C2 training. On the other hand, the performance of
classical planners has been dramatically improved over the
last two decades, and today these are capable of generat-
ing in seconds plans of hundreds of steps in state models
of more than 21000 states. In addition, it is of growing un-
derstanding that successful reasoning about real-world sys-
tems of active entities does not necessarily have to explic-
itly take into account all the complexity of the reality while
choosing between alternative courses of action. This prop-
erty of many real-world domains has been exploited in the
past both in experiments (Yoon, Fern, and Givan 2007;
Yoon et al. 2008), as well as in ambitious applications of
AI reasoning (Muscettola et al. 1998).

Departing from this matter of business, we have decided
to start with a fully off-the-shelf satisficing classical planner,
adapting it only when really needed and only via external
wrappers. Specifically, in the experiments described later
on, SHOGUN was using the very popular these days Fast
Downward planner (Helmert 2006), using its greedy best
first and WA? search engines, and the seminal FF heuris-
tic (Hoffmann and Nebel 2001).

While Fast Downward is based on the SAS+ language
(Bäckström and Nebel 1995), which describes a fully de-
terministic, fully observable, single agent problem, the un-
derlying physical simulation is much more complex. In what
comes next we describe our abstraction mapping of planning
tasks from the level of simulation to SAS+.
• Symbolic abstraction of the physical world. The function

TRANSLATE used by the planning module in Figure 1b to
map a physical state σ to a SAS+ state s is implemented
via a knowledge engineering sub-module (KE). The latter
comes to bridge between the general-purpose planner and
the specifics of the simulated domain; as such, it is used
twofold. First, KE allows a user to define various layers of
information over the map. These layers describe strategic
points, passable areas, ballistically dominating areas, etc.,
and for most, they can be derived automatically from the
digital map used by the simulation. This processing can
be performed once per map, and thus completely offline
not only to a specific training session, but to the training
in general. In addition, the subject matter expert (SME)
in charge of the training session can use KE to further en-
rich this information by specifying, e.g., regions that he
prefers not to be used for movements/positions of specific
units. Based on the now defined information layers of the
map, KE maps status messages received from the execu-
tion monitor to proper values of the respective SAS+ vari-
ables. The abstraction of the geographic data such as unit
locations and headings is archived via a, possibly non-
uniform, grid overlaid on the map.

• Non-determinism of actions. While basically all actions
of the units are simulated to have stochastic effects, the
entropy of the underlying probability distributions is usu-
ally low, and typically they have single peaks that take
most of the probability mass. A natural abstraction of
such actions to fully deterministic SAS+ actions simply
ignores all but the most likely outcome of each action.
SHOGUN uses precisely that simple abstraction, corre-
sponding to a degenerate form of hindsight optimization,

an “online anticipatory strategy” for control problems
that has previously been successfully applied to prob-
lems of online scheduling (Wu, Chong, and Givan 2002)
and probabilistic planning (Yoon, Fern, and Givan 2007;
Yoon et al. 2008).

• Partial observability. Partial observability in the domain
of battlefield training stems from the true modeling of re-
ality in which the information that is available to the plan-
ner is only what the red force “sees”: blue units which
are not detected by any red units are not reported to the
planner. We use ”optimistic sensing” to get rid of this
partial observability as follows: when a red unit performs
a sensing action (that is, looks in some direction, trying
to find blue units) the expected effects of that action are
that no blue forces will be detected. If there are indeed no
blue forces - the plan can proceed normally. If there are
blue forces there, then the current plan is most likely no
longer valid, and therefore re-planning is performed, this
time accounting for the “new” blue forces.

• Optimization objectives. In most battlefield scenarios, the
mission is to achieve some objective, while trying to min-
imize friendly losses. Since we use single-agent planning,
we do not directly account for enemy actions, and specifi-
cally, we do not plan for friendly units to be destroyed.
Therefore, we do not directly try to minimize friendly
losses, but rather try to minimize risk. We associate a
risk level with each action, by assigning higher costs to
riskier actions. For example, maneuvering in a flat area at
the base of an enemy-occupied hill is riskier than maneu-
vering on top of a hill, and is therefore more expensive.
Although the planner we use is not an optimal planner, it
does try to find a low-cost plan, which directly translates
to a low-risk plan.

Domain Formulation
Several domain formulation choices affect the entire sys-
tem. First, as stated before, we divide the map into locations,
which are arranged on a grid, where each location can hold
multiple friendly units, and multiple enemy units. Each grid
location is represented by an object in the planning problem,
and thus locations are used as parameters for operators and
predicates. The translation of world knowledge to a plan-
ning state involves mapping units at specific coordinates to
the corresponding grid locations.

Second, entities in operational domains often act in line
with some standard operating procedures (SOP), and thus,
in particular, act in formations. In maneuvering, for in-
stance, a formation could be either a single entity moving
by itself, 2 entities moving side-by-side, 3 entities moving
in a single column, or any other arrangement. Types of for-
mations are defined by the overall set of SOPs, and can be
provided by a subject matter expert. We chose to formulate
our domain so that all actions are performed by some for-
mations of entities. For example, moving from one location
on the grid to a neighboring location is done by using the
Move action on a formation, which describes the entities to
be moved, and their internal arrangement (side-by-side, col-
umn, etc.). Two special types of action, Set-Formation and
Break-Formation , allow entities to rearrange themselves in
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different (possibly larger or smaller) formations. Note that
this is similar in spirit to the well-known Logistics planning
benchmark from IPC-1998 and IPC-2000, where a forma-
tion can be thought of as a truck, and an entity can be thought
of as a package loaded into the truck (aka joining formation).
This engineering methodology appears to be quite useful in
general; for instance a very similar technique has been used
by Balla and Fern (2009) in their recent work on action se-
lection for tactical assault, evaluated by the authors on War-
gus computer games.

Third, we had to deal with enemy units on the battlefield,
and their partial observability. We model enemy presence
by creating a state variable for the number of enemy units
at each grid location. The possible values for this range are
either a number (between 0 and some bound) or unknown -
a special value indicating that we have no knowledge about
enemy presence in that grid location. Thus, the (expected)
effect of performing a sensing action on a given grid location
is that if the number of enemy units in that location was
unknown, it becomes 0, and otherwise, there is no effect.
This formulation also allows us to ignore the identities of
enemy units, which are not part of the knowledge provided
to the planner anyway.

Load Balancing and Parallelization
One addition to the standard classical planning setting that
we found essential was load balancing between the red units.
At high level, the load balancer in SHOGUN pre-assigns each
sub-goal to a subset of units, decomposes the overall plan-
ning task into several smaller tasks that are planned for inde-
pendently, and then combines their solutions into a plan for
the overall task. This procedure is important for balancing
the workload between different role-players, causing forces
to act in a more “coordinated matter”, and reduces the size
of the individual planning tasks solved by the planner.

Similarly to all other system components, the load bal-
ancer in SHOGUN is completely domain independent. It
starts by assigning to each goal a subset of units that can
achieve it as cheaply as possible in the (easy to solve) delete-
relaxed version of the planning task. Then, the rest of the
units are assigned in proportion to the cost of the relaxed
plan for each of the goals, so that goals that are riskier
to achieve are assigned more units. Finally, the goals are
grouped based on the transitive closure of the forces as-
signed to them, and each such group of goals is planned for
using only the forces assigned to it. In the domain consid-
ered here, plan combination is trivial, since no two plans can
interfere with each other.

One thing to note is that, although the load balancer might
assign several units to a single goal, the planner might still
not utilize all of these units (the plan found could involve
just a single unit). In order to force SHOGUN to act more
realistically, we artificially increase the cost of action rep-
etitions. This puts a heavy bias toward using more than a
single unit in each plan, resulting in plans allocating forces
to goals in ad hoc proportion to the size of the goal.

Finally, though the quality metric for our plans is risk
reduction, and thus we employ a cost-oriented, sequential
planning, the actions of different units often can (and if so,

should) be applied concurrently. While we do not plan for
this second objective directly, we do convert our sequen-
tial plans into partial order plans allowing concurrent ac-
tion execution. If our domain had been formulated in plain
STRIPS, then simple Partial Order Causal Link (POCL)
backward analysis of the plan would have given us a de-
sired partial order. However, our domain formulation uses
conditional effects, and this requires slight extension of the
standard POCL analysis. To establish hypothetical causal
relations between the actions, we first simulate sequential
execution of the initial plan, determine which conditional
effects of which action instances along the plan have been
fired, compile the fired conditional effects into now uncon-
ditional effects of the respective actions, and then perform
the standard POCL backward analysis of the plan. The re-
sulting parallelization is sound and complete, and results in
realistic schedule of plans for our multi-unit forces. Over-
all, the simultaneous acting effect, achieved in SHOGUN
via the mixture of load balancing and plan parallelization,
achieves the effect of a standard military C2 methodology
called “mission-oriented C2”, allowing for solving large-
scale problems by wisely delegating its sub-parts to different
planners.
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Abstract
The presentation goes through all the system features which 
make the new timetabling technology unique and efficient, 
presenting  constraint  priorities  as  the  most  important 
innovations  in  the  scheduling  process.  The  system  of 
priorities  exists  in  the  main  three  fundamental  modules: 
inconsistency  detection  system,  optimization  module  and 
solver. The complete constraint system is also presented as 
an important part of useful timetabling software.
Moreover, the presentation covers other features which can 
also  make  the  solution  useful  for  other  non-school 
problems.  The  described  solution  is  available  at 
www.school-timetable.eu.

 Introduction 

The process of building a timetable is very complex and 
arduous  as  it  requires  many  difficult  constraints  to  be 
reconciled at once. This is too great a challenge for people 
even in cases of small bundles of requirements but can be 
simplified by using modern software systems.

In this paper the modern system means software which 
can  take  care  of  the  whole  scheduling  process  without 
bothering  its  users  too  much  and  without  asking  any 
questions  about  how  to  arrange  some  classes  which 
apparently had been too difficult for the system to set. All 
the questions should be constructive ones.

The  www.school-timetable.eu  site  is  such  a  new, 
modern  solution  to  the  problem.  The  most  innovative 
feature  is  prioritizing the constraints.  It  is  so natural  for 
people  working  on  a  timetable  to  abandon  some 
unimportant  requirements  due  to  lack  of  time  or  skills. 
Time and skills count in virtual reality as well.

Constraint priorities are taken into account in the main 
three fundamental modules in the system i.e. inconsistency 
detection system, optimization module and solver.

Every scheduler needs a complete set of requirements, 
which can be defined by the user, to achieve the goal of 
getting a  timetable  in  a  fully  automatic  way,  simply  by 

clicking on „Generate” button. Without a complete set, the 
received  solution would be imperfect  and  would require 
user  interaction  and  analysis;  in  some  cases  the  whole 
timetable  would  need  to  be  rebuilt  making  the  solution 
useless.

If  users  are  given  a  possibility  to  enter  all  of  their 
requirements into the timetable, they most likely enter all 
of them and thus schedulers need good inconsistency and 
optimization systems based on priorities.

Inconsistency Detecting System

The inconsistency detecting system filters the requirements 
and  removes  the  ones  with  less  priority  which  are  in 
conflict  with  the  important  ones.  The  priorities  can  be 
assigned  to  constraints  based  on  their  category  i.e.  min, 
max quantity, gap mode etc. and the resource they concern 
e.g. a teacher, a classroom.

Assuming  the  priorities  were  assigned  to  constraints 
correctly, the system will erase only the ones that must be 
removed i.e. the ones with lower priorities.

Solver

As  soon  as  the  inconsistency  detecting  system  removes 
inconsistencies,  the solving process  begins.  This  process 
needs  to  be  efficient  and  it  is  crucial  for  schedulers  to 
consider it effective. The www.school-timetable.eu system 
has got the most powerful solver. The solver was tested on 
data coming from 2008-2010. The 4.0 version proves its 
effectiveness  by  arranging  all of  the  classes  with  good 
execution time, provided the user turned on the correction 
process or has not banned any of the constraints from being 
removed  during  the  optimization  process.  The  algorithm 
managed to solve a timetable with 13 sites, 1300 courses, 
12000 subjects, 30000 students in it, which means it can be 
used  for  timetabling  a  university  schedule  with  shared 
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classrooms, teachers etc.
The  solver  takes  into  consideration  each  requirement 

which needs to be defined for school timetables and can be 
easily extended with new ones. At present the solver copes 
with all of the constraints used in school planning that were 
necessary  during  the  last  few  years  of  the  system 
development, even at times when full timetables needed to 
be built without enough information provided e.g. missing 
classes, unknown language levels.

The quest for completeness produced flexibility of the 
system  and  now  it  is  able  to  handle  other  types  of 
timetables e.g. work schedules. It is worth mentioning such 
constraints,  which  are  not  present  or  very  rare  in  other 
timetabling systems, like different working times for sites, 
inter-moving  modes  and  times,  classes  order,  first/last 
lesson  in  a  day,  packages  of  courses  for  individual 
students,  resources  other  than  classrooms,  combined  & 
correlated classes, shift work, space between classes etc.

Optimization Module

Often to get a complete solution some systems need their 
users to manually abandon some difficult constraints and 
decide which ones need to be removed first. Our system is 
much more „aware” of timetabling possibilities and reality 
than  its  users;  everything  it  needs  from  them  is  the 
importance of constraints in a form of their priority. There 
is  no  reason  to  ask  the  users  to  help  solve  some  sub-
problems because the computer has much more chance to 
try them out quickly.

The optimization process is a way of getting a complete 
solution. The last step in it is the correction process, which 
is the last resort to receive a full solution if the user had not 
allowed to remove some of the constraints (called fixed) 
because of their high importance.  The correction process 
works in two runs. The first run will be called here „the 
ambitious  run”  and  results  in  a  fully  or  partially  built 
timetable  with  all  important  (fixed)  constraints  in  their 
place.  The  second  run,  called  „the  good  enough  run,” 
arranges the rest of the classes which were not able to be 
arranged  in  the previous „ambitious  run.” However,  this 
time  without  constraint  fixing  so  it  will  be  possible  to 
remove  them  if  necessary  and  place  all  the  remaining 
classes. This is modeled after people who need to abandon 
their ambitious plans before they fail; doing so at the very 
last  moment they are able to get  much further,  had they 
taken a shortcut right at the beginning.

The timetable correction is fully automatic but can also 
be used manually if the users want to. It also lets its users 
fix  more  constraints  than  it  is  really  needed  if  they  are 
afraid they could be removed by the system too early.

System Architecture

The  ideas  mentioned  in  the  preceding  paragraphs  were 
foundations  of  the  www.school-timetable.eu  system 
architecture depicted on Figure 1.

Figure  1:  Overview  of  the  www.school-timetable.eu  system 
architecture

As one can see from the process flow perspective showed 
on Figure 1, the system fully automatically applies a wide 
range of techniques in order to receive a complete solution. 
There  is  no  need  for  difficult  questions  like  "How  to 
arrange some classes?" because the system can decide by 
itself  which  difficult  constraint  it  should  remove  on  the 
basis of constraint priorities. However, a user is allowed to 
change the priorities  dynamically by creating corrections 
(see  „Manual  correction>Create  a  subproblem”)  or  even 
arbitrarily impose a given distribution of classes manually 
(see „Manual correction>Update the results”). 

Besides,  it  is  possible  to  define  an  expected  or  fixed 
distribution of classes at the very beginning if one is aware 
of all of the requirements at this stage. Taking a closer look 
into the remaining steps of the process we can distinguish 
the  following  ones:  entering  data  /constraints  defining/, 
assigning  priorities  to  constraints  and  sharing  and 
managing the final timetable.

Constraints Defining
The  step  of  entering  data  needs  to  be  sufficient  and 
effective. Sufficiency means a complete set of constraints 
which can be reflected in the system (see „Solver” chapter) 
while  effectiveness  signifies  a  simplicity  of  applying 
constraints. For many scheduling systems defining groups 
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of students seems to be the most difficult thing to do. 
Creating groups is related to many reasons; one of them 

concerns student body sizes - some of them are too big to 
be taught, other ones suffer from the shortage of teachers. 
Another reason for dividing students into groups can be a 
need to combine groups on student body, year or school 
level.  At  the  end  students  can  select  an  individual 
education mode or some optional courses. The system has 
to be on alert and ensure that some common constraints for 
such groups will be met e.g. to avoid overlaping of courses 
selected by the same student, impose no gaps for students 
in certain kinds of schools or make sure that some defined 
constraints for the groups will be met.

In  www.school-timetable.eu scheduler  system the way 
of defining groups depends on the initial data we have. If 
we already know the way of dividing students into groups, 
the whole process can be simplified by using packages of 
courses (see Figure 2).

Figure 2: Defining the packages of courses

Sometimes it is impossible to say how students are going 
to  be  divided,  nonetheless,  we  need  to  secure  a  certain 
selection of groups avoiding overlaping of courses; later on 
appropriate courses will be selected according to skills or 
preferences. To achieve this goal we cannot use packages 
of courses but need a more flexible solution - correlating 
subjects designed by a maximum number of simultaneous 
lessons from a group of subjects or a subject  combining 
feature.
Setting a minimum number of simultaneous lessons can be 
a  way of  correlating  some classes  of  subjects;  however, 
setting a max number of simultaneous lessons to one could 
be a way of separating subjects in time. On the other hand, 
the goal of subject combining is to correlate lessons, share 
a  classroom by some  of  the  subjects,  define  a  common 
lesson for several classes, define elective line i.e. a block 
of many classes of many subjects where each student may 

choose one subject from that line. 

Priorities Defining
The  second  step  of  the  flow  in  Figure  1  is  to  assign 
priorities to the previously entered constraints. To simplify 
the assignment process there are some predefined priorities 
for existing constraints which do not have to be redefined 
in many cases. However, if necessary, they can be changed 
e.g.  a  user  can demand no gaps for  a  few teachers  as a 
priority request.

In the example below (Figure 3) John Smith and Ann 
Brown's teacher  gaps & availabilities are set  to be more 
important than the same constraint types for other teachers. 
Also John Smith's gaps & availabilities are more important 
that  the  same  ones  for  Ann  Brown  because  "Elements 
before constraints" attribute is set to "Yes". With the "No" 
value the order  would be different:  John Smith's  gaps > 
Ann  Brown's  gap  >  John  Smith's  availability  >  Ann 
Brown's availability. 

Figure 3: Example of constraint priorities defining

Sharing and Managing the Final Timetable
Ultimately,  after  a  timetable  is  created,  it  can  be  easily 
accessed online by students, classes, teachers & classrooms 
supervisors.  If  required,  registering  for  courses  can  be 
turned  on  and  even  more  preferences  can  be  taken  into 
account during the scheduling process. Another option for 
schools is the possibility to manage teacher  substitutions 
online. The change will be immediately communicated to 
the end users /students, teachers etc./. 
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Figure 4: Sharing the timetable online

Development Perspectives

The author’s desire is to build a modern and user-friendly 
tool  for  scheduling  purposes  both  for  schools  and  other 
institutions working with timetables; the system should be 
capable of creating optimal timetables and should allow its 
users  to access  them online.  The release  of  the Android 
version of the timetable browser is planned in 2011. The 
new interfaces for institutions other than schools should be 
soon put into place.

Although  the  algorithm  is  in  its  final  state  of 
development there are still opportunities for improvement. 
Generating  a  timetable  for  a  university  with  all  of  its 
departments is available, though the whole process takes a 
few  hours.  It  is  possible  to  increase  its  speed  by  using 
concurrent threads and splitting techniques.

Another  area  for  development  is  an  classrooms 
arrangement system which could be capable of operating 
on groups of classrooms instead of individual ones. It  is 
worth mentioning the another area for improvement such 
as integration with other systems. Although the system is 
ready to operate on the open JSON RPC standard and it is 
also fast enough to be used separately, the integration with 
other existing systems can be convenient for the end users. 
It  is  possible  to  develop  some  pieces  of  administrative 
software to use with the timetable generator or to integrate 
it  closely  with  other  systems  which  perform  their  tasks 
well.

History

The  idea  of  the  scheduler  in  its  current  state  has  been 
maturing for 16 years since 1995 when it was first taken 
into consideration. The year 2008 turned out to be critical 
for the project since the main questions were answered and 
a new online system was built.
However since its first release in 2008 many parts of the 

generator have been improved. Here are some of the most 
important dates in the project’s development. Most of the 
following tasks were  executed  by one person  only -  the 
author:
• 1995-2008 - idea development,
• IV 2008 - the beginning of the project and its first release 

- v1.0,
• V-VI 2008 - improvements in inconsistency system, 
• VI 2008 - gap constraints revised,
•  VII  2008  -  classroom  management  system  (preferred 

classrooms, arrangement modes, fixed classrooms) & no 
1 or 2-hour-long working days,

•  IX  2008  -  student  groups,  combined  subjects,  more 
improvements in inconsistency system,

•  II  2009 -  v2.0  with  new graphical  design  and  lots  of 
improvements:  sharing  &  managing  timetables  online 
(substitutions); priorities used in inconsistency system; 
new  important  constraints  introduced:  group  of  days, 
order of classes, sites with independent set of times of 
lessons, blocked subjects, students & courses, 

• VII 2009 - optimisation system using priorities,
• XI 2009 - v3.0 with usability improvements, packages of 

courses,  registration  for  courses  before  or  after 
scheduling, correlation or separation of subjects within 
subject groups,

• XII 2009 - optimisation system improved,
•  III  2010  -  v4.0  performance  &  efficiency  improved; 

JSON-RPC & XSD, 
•  VIII  2010  -  successful  execution  of  large  university 

timetables  with up  to  13  sites  and  1300 courses  with 
about 10 subjects each (12000 subjects were defined),

• XII 2010 - new usage scenarios and application - work 
scheduling;  data  entering  speed-up  and  simplicity  - 
mass change & automatic package of courses generation 
based on courses properties,

• I 2011 - bilingual version and foundation for multilingual 
version; exports & imports of data,

• II 2011 - timetable correction by days and further speed-
up of generation process,

• III 2011 - timetable correction by sub-problem /solving 
sub-problem  in  independent  way  as  an  external 
timetable  and  merge  results  afterwards/,  automatic 
correction if not arranged lessons; manual and arbitrary 
corrections.
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Abstract

Multi-modal transportation is a logistics problem in which a
set of goods have to be transported to different places, with
the combination of at least two modes of transport, without
a change of container for the goods. The goal of this paper
is to describe TIMIPLAN, a system that solves multi-modal
transportation problems in the context of a project for a big
company. In this paper, we combine Linear Programming
(LP) with automated planning techniques in order to obtain
good quality solutions. The direct use of classical LP tech-
niques is difficult in this domain, because of the non-linearity
of the optimization function and constraints; and planning
algorithms cannot deal with the entire problem due to the
large number of resources involved. We propose a new
hybrid algorithm, combining LP and planning to tackle the
multi-modal transportation problem, exploiting the benefits
of both kinds of techniques. The system also integrates an
execution component that monitors the execution, keeping
track of failures and replans if necessary, maintaining most
of the plan in execution. We also present some experimental
results that show the performance of the system.

(The full paper describing this system appears in the ICAPS-
11 Proceedings at pages 66-73)
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Abstract

We present the problem of planning off-line on the
ground all the activities of a constellation of next-
generation agile Earth-observing satellites and the spe-
cific algorithm that was developed to solve it. Then, we
present the replanning problem that arises when urgent
observation requests are received during plan execution.
We show how the planning algorithm can be used in this
replanning setting, with some modifications that limit
computing time and favour plan stability and optimal-
ity. We finally introduce PLANET as a tool based on
these algorithms, and demonstrate algorithm efficiency.

Motivation
The context of the work we present in this paper is the Eu-
ropean defence MUSIS project (Multinational Space-based
Imaging System for Surveillance, Reconnaissance, and Ob-
servation) and more precisely the management of the MU-
SIS agile satellites that are equipped with high-resolution
optical observation instruments.

As usual, such satellites are managed from the ground by
a mission planning system which receives user observation
requests, builds regularly satellite activity plans over a lim-
ited horizon ahead (typically one day), and receives plan ex-
ecution reports. These plans must meet all the physical con-
straints and satisfy as well as possible the user requests.

However, such a management system is not very reactive.
Any observation request, arriving at any time during the day,
must wait for the next day to be taken into account. This led
project managers to consider a more reactive management
system that would take full advantage of the presence of sev-
eral ground control stations and of the numerous associated
satellite visibility windows that allow updated activity plans
to be uploaded.

In such a setting, replanning may be called before any
satellite visibility window. Replanning problem data is, on
the one hand, a current activity plan involving hundreds of
observations and, on the other hand, some urgent obser-
vation requests (at most some tens). The goal is to build
quickly (efficiency) a new plan over the rest of the day that
is of an as high as possible quality (optimality) and is as
close as possible to the previous one (stability).

Planning problem
The constellation we consider is made up of two identical
satellites1 moving on the same orbit (circular, low altitude,
quasi-polar, and heliosynchronous) with a phase shift of 180
degrees between the two satellites.

Each satellite is equipped with thrusters for potential or-
bital manoeuvres and gyroscopic actuators for quick atti-
tude movements, useful to perform observations and tran-
sitions (Lemaître et al. 2002).

A telescope, with two focal planes, allows observations
to be performed in the visible and infra-red spectra, with
two images (visible and infra-red) within day periods (on
the ground) and only one image (infra-red) within night peri-
ods. A mass memory allows observation data to be recorded
and a high-rate large-aperture antenna allows it to be down-
loaded towards ground reception stations. Solar panels al-
low batteries to be recharged when the satellite is not in
eclipse. For the sake of agility, all these equipments are
body-mounted on the satellite.

We do not go into details here, but the numerous phys-
ical constraints that must be met can be classified into six
classes : attitude trajectory, observation, download, mem-
ory, instruments, and energy. Some of them are similar to
the thermal and pointing constraints considered in (Chien et
al. 2010) for scheduling operations on board EO-1.

With each user request, are associated a polygon which
has been split into strips, a priority level, a weight, and a
deadline. Typically, three priority levels are available, from
3 to 1. It is assumed that any request of priority p is preferred
to any set of requests of priority strictly less than p. Weights
allow to express preferences between requests of the same
priority level and are assumed to be additive.

It is assumed that any strip can be observed using only one
strip overflight. With each strip, are associated a geograph-
ical definition, observation durations (day or night), image
sizes (visible, day or night infra-red), a maximum observa-
tion angle, and a set of triples 〈satellite, visibility window,
weather forecast〉.

1The planning algorithm we propose is able to manage any
number of satellites, possibly not identical: not the same param-
eter values.
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User requests may arrive at any time and, each day, at
a given time, a plan is built for the next day from all the re-
quests that are not out of date and not fully satisfied yet. This
plan is built on the ground and then uploaded to the satellites
for execution. Typically, up to ten minutes of computing
are available for planning. After plan execution, observation
data that has been downloaded to the ground is analyzed,
taking into account the actual cloud cover, and satisfied re-
quests are removed.

In addition to these normal user requests, urgent ones may
arrive at any time too. The latter must be taken into account
as soon as possible. To do that, before any visibility window
between a ground control station and a constellation satel-
lite, an updated plan is built for the rest of the day from all
the requests, either normal or urgent. Replanning is guided
by two objectives: on the one hand, to produce a new plan
of highest quality, as in planning, and, on the other hand, to
maintain in the new plan the greatest number of observations
present in the previous one, because a plan is a kind of com-
mitment facing users. In order to be able to take into account
urgent requests until the last minutes, we consider that half
of the computing time available for planning is available for
replanning, that is up to five minutes.

The planning problem can be modeled using for each
satellite the following state variables: the current time (or-
bital position); the attitude position and speed along the
three axes; the available memory and energy; for each in-
strument, its status (ON or OFF), the remaining ON time,
and the remaining number of ON/OFF cycles; for the an-
tenna and the visible focal plane, its temperature.

Six types of action are available for each satellite: orbital
manoeuvres which are mandatory, observations, data down-
loads, heliocentric pointings, geocentric pointings, and in-
strument switchings.

It must be observed that actions of all the types, but the
third and sixth (data downloads and instrument switchings),
constrain the satellite attitude and are thus mutually exclu-
sive. They must be performed in sequence. Only data down-
loads and instrument switchings can be performed in paral-
lel, at any time for instrument switchings, but only within
effective communication windows for data downloads. As a
consequence, a plan has the form of a sequence of actions
of any type, except the third and sixth, with attitude move-
ments between consecutive actions and with data downloads
and instrument switchings in parallel.

The criterion to be optimized is a vector of numbers vp,
one for each priority level p. Two vectors resulting from
two plans are lexicographically compared. For each priority
level p, vp is the sum of the weights of the requests r of
priority p, weighted by four factors whose value is between
0 and 1 and which represent (1) the percentage of realization
(observation and data download), (2) the mean percentage
of cloud cover, (3) the mean observation angle, and (4) the
mean data delivering delay, over all the strips of the polygon
associated with r.

Planning algorithm
To solve this planning problem, we developed a specific
chronological forward search algorithm with dedicated deci-
sion heuristics, constraint checking, limited lookahead, and
backtrack in case of constraint violation, which guarantees
the production of a plan that may be not optimal, but is really
executable by the satellites.

Decreasing priorities First, the algorithm we developed
works by decreasing priority levels from 3 (the highest) to
1 (the lowest). We consider the sequence of observations
present in the plan produced at level p + 1 as being manda-
tory (without fixed starting times) when building a plan at
level p. Such an approach is justified by the fact that any
request of priority strictly greater than p is preferred to any
set of requests of priority p.

A forward chronological algorithm At each priority
level p, the algorithm builds a plan in a forward chronolog-
ical way, from the beginning Ts of the planning horizon to
the end Te . At each algorithm step (see Figure 1), if t is
the current time and o is the next mandatory observation to
be performed, the algorithm chooses the next observation o′
of priority p to be performed before o (o if no such obser-
vation exists). The algorithm stops when there is no other
observation to be included in the plan.

o

o

o′

t

t t′ t′′

Figure 1: At each algorithm step, choice of the next obser-
vation to be performed: o is the next mandatory observation,
o′ is the chosen observation of priority p.

Decision levels This choice of the next observation to be
performed is the first algorithm decision level. Once it has
been made, the algorithm makes other choices over the tem-
poral horizon from t to t′′ (see Figure 2) at other decision
levels: (2) possible insertion of geo or heliocentric pointings,
(3) possible data downloads, and (4) instrument activations.

observations

pointings

visible focal plane

infra−red focal plane

antenna

downloads

t t′ t′′

d1 d2 d3 d4

geo helio

ON

ON

ON

o′

Figure 2: Example of decisions at the four levels: (1) obser-
vations, (2) pointings, (3) downloads, and (4) instruments.
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Once decisions have been made at the four levels, a con-
sistent plan is available from t to t′′, extending the plan that
already exists from Ts to t, and the planning process can
continue from t′′, starting from a known satellite state.

This incremental process, which builds incrementally a
complex system trajectory, is the main justification for using
a forward chronological search.

For the sake of simplicity, we present the algorithm by as-
suming only one satellite. However the planning process is
in fact interleaved on the two satellites and the next planning
step is the earliest one over the two satellites.

Backtracks At any decision level, in case of constraint vi-
olation, other choices are made. If no other choice is avail-
able, a hierarchical backtrack at the relevant decision level
is triggered (see Figure 3).
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to be removed

0

1

0

0

1

1

0
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remove the

last download

no more download

memory
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antenna problem
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focal plane
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decision made over [t,t’’] horizon

current state at time t

remove observation o’

remove observation o’remove observation o’

remove observation o’

Pointings

Downloads

Instruments

Observation

Figure 3: Hierarchical backtracks between decision levels.

At the first level, if the chosen observation is a manda-
tory one (higher priority), and the insertion is impossible, a
chronological backtrack is triggered to the previous insertion
of an observation of priority p. However, in order to avoid as
much as possible such situations, the latest observation end-
ing times of mandatory observations are propagated from
the end to the beginning of the sequence before planning.

Heuristics Heuristics are necessary to make choices at all
the decision levels. These heuristics are crucial to the pro-
duction of good quality plans because, for the sake of effi-
ciency, the algorithm backtracks only in case of constraint
violation and never to try and improve on the current plan.

The implemented heuristics are not detailed here.

Dealing with replanning
The first question is how to define stability and how to com-
bine quality and stability (Fox et al. 2006).

In our problem, the quality of a plan is measured by a
vector of utilities vp, one for each priority level p. We main-
tain this global hierarchical view when replanning. For each
priority level p, let Rp be the set of requests of priority p.
For each request r, let wr be the utility associated with r.
We have: vp =

∑
r∈Rp

wr. Let Ip ⊆ Rp be the set of
requests r of priority p that are negatively impacted by re-
planning (at least one strip of the polygon associated with r
was present in the previous plan, but does not appear in the
new one). We define the stability as the sum over the im-
pacted requests of the loss in utility: sp =

∑
r∈Ip

(w′
r −wr)

with w′
r (resp. wr) the previous (resp. new) utility associ-

ated with r. sp is positive or null. The lower sp, the more
stable the plan. Then, we define the criterion to be optimized
when replanning as a weighted combination of quality and
stability: vsp = vp−α.sp, with α a positive parameter to be
set by system users according to the importance they attach
to stability with regard to intrinsic quality.

The data of a replanning problem is very similar to the
one of a planning one: same requests, state variables, ac-
tions, and constraints. The main difference is in the defini-
tion of the criterion to be optimized. Specific data is how-
ever: the previous plan, a set of urgent requests to be taken
into account and, for each constellation satellite s, a replan-
ning horizon.

To solve our problem, we did not choose to use local
search methods, mainly because of the high potential cost of
a local change: adding or removing an action in the middle
of a plan requires the complex system trajectory to be com-
puted and checked again from the adding/removing point to
the end of the planning horizon. We chose to use for replan-
ning the same forward chronological search algorithm we
used for planning, called with slightly different data.

We consider four possible modes of replanning. Roughly
speaking, the search is less and less restrictive from the
first to the fourth mode: less and less constraints imposing
previously planned observations (by modifying priorities or
weights in heuristics), more and more observations taken
into account. It would be possible to run these modes se-
quentially or concurrently and to get the best result obtained
by the deadline.

PLANET
Planning and replanning algorithms were implemented in
a tool, called PLANET for PLanner for Agile observatioN
satElliTes (see Figure 4), which was developed for this mis-
sion, on the basis of a previous tool (Beaumet, Verfaillie,
and Charmeau 2011).

Algorithms were experimented on a real-size realistic in-
stance, built by CNES (French Space Agency) and whose
characteristics are the following ones: a one-day planning
horizon; 8 ground reception stations; 3 priority levels; 1166
observation requests; all of them with polygons limited to
one strip and all of them of the same weight (1); among



26

Figure 4: Top level interface of the PLANET tool when planning is complete.

them, 377 of priority 3 (the highest), 419 of priority 2, and
370 of priority 1 (the smallest); meteorological forecast built
from climatological data. On this instance, planning takes
236 seconds (about 4 minutes), using a 3Ghz Intel processor
with 2.5Go of RAM, running under Linux. In the result-
ing plan, 906 (78%) observations are performed and down-
loaded, 16 (1%) are performed, but not downloaded, and 244
(21%) not performed at all. Among the observations of pri-
ority 3, 280 (74%) are performed. Results are 367 (88%) for
priority 2 and 275 (74%) for priority 1.

In order to evaluate the four replanning modes, we con-
sidered a scenario where 10 urgent requests of priority 3
(the highest) arrive some minutes before uploading the daily
plan. Such a scenario is one of the most stressing for re-
planning because planning must be performed again over the
whole one-day planning horizon. Following such a scenario,
we built three replanning instances of increasing difficulty
(urgent requests either geographically spread, concentrated
on already overloaded areas . . . ). Relative efficiency of each
mode in terms of quality, stability, and computing time de-
pends on the instance type. Running these four replanning
modes in parallel would be an option. Another option would
be to run them in sequence. For that, the order according to
which modes are called could be determined for each replan-
ning instance by performing a quick analysis of the setting.

Conclusion
We built a planning algorithm which (i) is able to handle
all the complex physical constraints (in particular those re-
lated to attitude trajectory), (ii) guarantees the production
of a plan that may be not optimal, but is really executable
thanks to constraint checking, and (iii) is able to produce

in some minutes, over a one-day planning horizon, a plan
with hundreds of observations and downloads, which cov-
ers satellite attitude trajectory as well as observation, data
download, satellite pointing, and instrument activations.

We adapted the algorithm to run in a repair mode, taking
into account urgent observation requests: modification of,
first, the optimization criterion and, then, request priorities
and weights in heuristics (in order to favour plan stability).

Algorithms were implemented in the PLANET tool which
allows planning and replanning to be performed and pro-
duced plans to be visualized in the form of timelines.
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Introduction
In this work, we present our ongoing effort on building a
domain-independent software platform that integrates basic
capabilities for planning, execution, monitoring, re-planning
and learning. We name it PELEA after Planning, Execu-
tion and LEarning Architecture. The goal is two-fold: first,
to provide software engineers a tool that can be used off-
the-shelf to easily build planning applications, supporting
a rapid prototyping life-cycle; and second to provide plan-
ning practitioners a tool that can be highly configured and
in which new components replacing the ones that are al-
ready integrated can be easily added. Regarding the first
goal, the platform currently includes state-of-the-art compo-
nents for performing a wide range of (meta-)planning tasks,
such as: planning (using several paradigms), controlled ex-
ecution, monitoring of correct plan execution, re-planning
when needed, learning of control knowledge, or low-level
planning. Ultimately the user could use the tool as-is by
giving as input a domain and problem descriptions. Regard-
ing the second goal, it can serve as a benchmark platform
for comparing different techniques under the same condi-
tions. For example, a planning expert might want to try out
a new re-planning technique on a robot simulator without the
need to generate a complete planning-execution-monitoring-
replanning architecture. We are currently interfacing the
platform with known simulators (videogames and robotic
platforms) as well as developing new ones for specific do-
mains (logistics) and even a domain-independent temporal
stochastic simulator. We are using this first prototype to de-
velop some applications, such as a robotic system controlled
by classical planning and a logistics transportation system.

We are building on our combined previous experience
on developing different kinds of applications, ranging from
fire extinction (Fdez-Olivares et al. 2006), logistics (Flórez
et al. 2011), satellites maintenance operations (Rodrı́guez-
Moreno, Borrajo, and Meziat 2004), education (Garrido et
al. In Press), tourism (Castillo et al. 2008), or data min-
ing (Fernández et al. In Press), among many others. In all
these cases, the process of developing the final application
is an “ad-hoc” manual process that requires expertise and
techniques on at least two fronts: domain and problem mod-
eling; and selection and configuration of planning systems,
together with the implementation of execution controllers,
monitoring tools and re-planning techniques, as well as the

optional use of learning components. There has been some
work on the first task based on powerful modeling tools such
as ITSIMPLE (Vaquero et al. 2009). ITSIMPLE allows defin-
ing different kinds of planning models, as well as running
diverse planners to generate solutions. However, it does
not support further execution, monitoring and re-planning of
those plans. We propose in this paper a tool that automates
those steps.

There has also been previous work that defines generic
architectures used for different purposes. Examples can
be found in space and robotics applications with platforms
like Mapgen (Ai-Chang et al. 2004), APSI (Cesta et al.
2009), PRS (Georgeff and Lansky 1987), or IxTeT (Ghal-
lab and Laruelle 1994). Usually these platforms have been
designed for particular planning techniques, as timeline-
based planning (Ai-Chang et al. 2004; Cesta et al. 2009;
Ghallab and Laruelle 1994), hierarchical planning (Fdez-
Olivares et al. 2006), or reactive controllers (Georgeff and
Lansky 1987). The goal of the PELEA project is to build a
component-based architecture able to perform planning, ex-
ecution, monitoring and learning in an integrated way, in the
context of PDDL-based and HTN-based planning and suit-
able for a wide range of planning problems.

Next, we define the architecture and its component mod-
ules. The architecture allows planning engineers to easily
generate new applications that integrate all planning and ex-
ecution capabilities by reusing and modifying the compo-
nents. A second scientific advantage of PELEA is to allow
researchers or practitioners to compare techniques related
to that functionality. We provide a set of tools that imple-
ment different techniques for each module, so that users can
choose among those. The paper describes the on-going work
on this architecture.

Overview of PELEA Architecture
PELEA architecture includes components that allow the
applications to dynamically integrate planning, execution,
monitoring, replanning and learning techniques. In general,
there are two main types of reasoning: high-level (mostly
deliberative) and low-level (mostly reactive). This is com-
mon to most robotics applications and reflects the separa-
tion between a reactive component and a deliberative com-
ponent. However, in our architecture, these are simply two
planning levels. This offers two main advantages: both lev-
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Figure 1: Screenshot of PELEA’s web interface showing the architecture of the system. It shows the execution of a simple
problem in the Driverlog domain.

els can be easily adapted to the requirements of the agent;
and the differentiation allows the agent replanning at either
level, which grants a greater degree of flexibility when re-
covering from failed executions. It would be possible to add
additional levels to allow developers for a more hierarchical
decision process. However, we consider that the sole dis-
tinction between high and low level is enough to tackle most
problems, as has been shown in many robotics applications.
Figure 1 shows a screenshot of PELEA’s web interface and
the current version of the architecture along with the integra-
tion of the modules. Even if we did not provide the explicit
APIs, all modules in the architecture have access to either
the high-level and low-level domain. We will describe in
more detail later on the inputs and outputs of each compo-
nent.

As we can see, PELEA is composed of eight modules that
exchange a set of Knowledge Items (KI) during the reason-
ing and execution steps. The main KIs that we have used are
(the modules also exchange the information related to the
parameters that configure how each module works1):

• stateL: low-level state composed of the sensory informa-
tion

• stateH: high-level state, translated from stateL as an ag-
gregation or a generalization of low level information

1For instance, which planner to execute.

• goals (problem): the set of high-level goals to be achieved
by the architecture

• metrics (problem): the metrics that will be used in the
high-level planning process

• planH: set of high level plans. Each high level plan is a set
of actions resulting from the high-level planning process.
The actions of these plans can also be the goals for the
low-level planner (in case we want the low-level planner
to act as a dynamic translation mechanism for high-level
actions)

• planL: set of low level plans. Each low level plan is again
an set of actions resulting from the low-level planning
process. These actions should be operational, that is di-
rectly executable in the environment

• domainH: definition of actions for high-level planning

• domainL: definition of behaviors (skills) for low-level
planning

• learning examples: to be used by the learning component
to acquire knowledge for future planning episodes, either
in the form of heuristics, domain models, or knowledge
on the problem specification

• heuristics: in different forms (control rules, policies,
cases, macro-actions, etc.) allow the planners to improve
their efficiency in solving future planning episodes
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• info monitor: meta knowledge on the plan that helps to
perform the monitoring (as, for instance, the generation
time of a literal)

The PELEA architecture is controlled by a module, called
Top-level control, which coordinates the execution and in-
teraction of the Execution and Monitoring modules. As said
above, PELEA architecture uses a two-level knowledge ap-
proach. The high-level knowledge describes general infor-
mation, actions in terms of its preconditions and effects, and
typically represents an abstraction of the real problem.

The high-level knowledge descriptions are rarely directly
executable, if ever, they must be complemented by the low-
level knowledge, which describes the more basic actions
in the simulated world, and it is typically concerned with
specific rather than general functions, and how they oper-
ate. The low-level knowledge is read from the environment
through the sensors placed in the Execution module. The
environment is either a hardware device, a software appli-
cation, a software simulator, or a user. An example of low-
level knowledge would be “the coordinates of a robot” or
“degrees of motion of a robot arm”. In PELEA, it is not
necessary to work at the two knowledge levels. For in-
stance, one can just work at the high-level, so that convert-
ing knowledge from high-level into low-level with the Low-
ToHigh module or using the Low-level planner module are
not needed. A more detailed description of the operation
of the architecture of PELEA can be seen in (Alcázar et al.
2010). In the following, the life-cycle of the architecture is
described.

Execution Module. The starting point of the architecture
is the Execution module, which is initialized by the Top-
level control, receiving a high-level and low-level domain,
and a problem, composed of an initial state, a set of goals
to achieve, a set of objects, and, optionally, a metric. The
Execution is initialized with the domain and the problem,
which in turn initializes the objects and their positions in the
environment. The Execution keeps only the static part of
the initial state, given that the dynamic part, called stateL
(low-level state), will come from the environment through
the sensors.

Monitoring Module. stateL, the problem and the domain
are sent by the Top-level control to the Monitoring module
to obtain a low-level plan (planL). The actions in planL are
executed one by one by the Execution module (as can be
seen in the Figure 1). As commented above, the modules
LowToHigh and Low-level planner are only used in case the
domain is modeled at the high and low levels. Otherwise,
the Monitoring calls directly the Decision Support to obtain
a high-level plan (planH). On the other hand, the module
Goals&Metric Generation is invoked in case the problem
goals or the metric change dynamically along the plan ex-
ecution. Once the Monitoring module receives the neces-
sary knowledge (state, problem and domain), it starts the
monitoring process. The first step of the plan monitoring
is to check whether the problem goals have already been
achieved (goalsL and goalsH in case we are dealing with
the two processes). If so, the plan execution finishes; other-
wise, the Monitor begins with the first iteration of the plan

monitoring.
Decision Support Module. At the first iteration of the

algorithm, there is no plan to monitor yet, so the Monitoring
calls the Decision Support, which obtains a valid plan that
achieves the goals from the current observed state through
the High-level replanner. This latter module receives a prob-
lem and a high-level domain (domainH), and generates a
high-level plan (planH). planH is sent back to the Decision
Support module, which computes the variables to be moni-
tored and keeps this information in the parameter info mon-
itor. Both planH and info monitor are sent by the Decision
Support to the Monitoring.

Low-level Planner. The Monitoring module, with the
help of the Low-level planner module, generates a set of ex-
ecutable low-level actions (planL), if this is the case. If the
Low-level planner module is not being used, the Monitoring
assumes that the high-level actions in planH are executable,
and they are sent to the Execution module, which executes
the actions one by one. Then, it senses the dynamic part of
the state from the environment. The Monitoring receives the
information from the observed state (stateL) after the exe-
cution of an action, and verifies the information in stateL
against the parameter info monitor. If the values of all the
checked variables are within the value range specified in info
monitor, the Monitoring continues with the plan execution.

Replanning/Plan Repair. Otherwise, if a discrepancy
between the expected and the observed state (stateL) is en-
countered, for instance, in the Figure 1 the Monitoring has
detected a discrepancy in the literal at driver2 s1, which
means that the action walk driver2 has failed in the exe-
cution, the anomaly is reported by the Monitoring module
to the Decision Support, which determines whether the dis-
crepancy is relevant to the plan execution or not. That is,
whether the plan is still valid to achieve the goals from the
current observed state. At this point, the low-level planner
can also be invoked to find the most immediate actions for
a rapid intervention -if reactivity is needed- since this mod-
ule typically stores predefined behaviours or courses of ac-
tions for reaching a situation. In case the Decision Support
finds the anomaly entails a plan failure, and so the plan is
no longer executable, it will take a decision about whether
applying a plan repair, or replanning through the High-level
replanner, thus starting a new iteration of the algorithm. Par-
ticularly, the Decision Support decides by an Anytime Plan-
Adaptation approach (Garrido, Guzman, and Onainda 2010)
whether it is worth repairing the plan, in which case it fixes
planH and makes it executable again, or, it would be better
to replan, in which case it requests a new plan to the High-
level replanner module. In case that the discrepancy is not
relevant to the plan validity, the Decision Support resumes
the execution of planH by sending back the remaining and
the new parameter info monitor to the Monitoring module,
which in turn sends the next action to the Execution.

Whilst no discrepancies are found in the observed state,
the two modules that are continuously interacting are the
Monitoring and the Execution. The Monitoring not only
checks for discrepancies but also if the problem goals
(goalsL and goalsH) are already satisfied in the current state.
In that case, the overall process is finished.
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Currently, PELEA integrates, among others, with the
following environments: Physical robot PIONEER 3DX
through Player (robot independent platform for controlling
robots of various kinds); Temporal probabilistic simula-
tor, developed within the project that allows users to de-
fine temporal probabilistic domains, in the spirit of MDP-
Sim (Younes and Littman 2004), for which we also have an
API; Virtual Robot Simulator (VRS2) that is a freeware soft-
ware suite for robotics applications; Alive (Fernández et al.
2008), an open platform for developing social and emotion
oriented applications; and TIMI (Florez et al. 2010), a plan-
ning tool for real logistic problems.

Conclusions
In this paper, we have presented the ongoing work on build-
ing an architecture, PELEA, that integrates planning related
processes, such as sensing, planning, execution, monitoring,
replanning and learning. It is conceived as a flexible and
modular architecture that can accommodate state-of-the-art
techniques that are currently used in the whole process of
planning. This kind of architectures will be a key resource
to build new planning applications, where knowledge engi-
neers will define some of the components, parametrize oth-
ers, and reuse most of the available ones. This will allow
engineers to easily and rapidly develop applications that in-
corporate planning capabilities. We believe this kind of ar-
chitecture fills part of the technological gap between plan-
ning techniques and applications.
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Abstract

Dora, the robot, is trying to find object in its environment.
Instead of just exhaustively searching everywhere, Dora is
equipped with probabilistic reasoning, representations, and
planning to exploit uncertain common-sense knowledge, such
as that cornflakes are usually found in kitchens, while also
accounting for the uncertainty of sensing in the real-world.
Dora demonstrates how to combine task and observation
planning in the presence of uncertainty by autonomously
switching between contingent and sequential planning ses-
sions. The demonstration emphasises the benefit of employ-
ing a robot with common-sense knowledge and the benefit of
the switching planner.

Introduction
With Dora, we are presenting results of our efforts to build
a robot capable of performing tasks on demand in dynamic
real-world environments. With this paper and demonstra-
tion we explicitly address the challenge to perform task and
observation planning under uncertainty in pursuit of current
robot goals by presenting a new planning approach to reason
with new representations of space. For Dora we integrate
probabilistic models of background conceptual knowledge,
and the visual appearance of objects and of room categories,
to solve an object search task. These models are used to
create and maintain a probability distribution over possible
states with respect to the spatial structure, the categories of
objects and rooms, and their relations to each other. Dora,
as presented in this paper, is a successor of a previous sys-
tem (Hawes et al. 2011) that did not make use of probabilis-
tic representations and featured only a classical, sequential
planner (Helmert 2006) to achieve exploration and categori-
sation of rooms.

Related Work
Probabilistic representations are employed for many lo-
calised functions in robots operating in the real world. For
example, Thrun et al. (2000) use such representations in
most of their system’s individual components, but their robot

∗The research reported here was performed in the EU FP7 IP
“CogX: Cognitive Systems that Self-Understand and Self-Extend”
(ICT-215181).

behaviour is generated using a reactive controller rather than
a domain-independent planner as here.

A number of recent integrated robotic systems incorpo-
rate a high-level continual planning and execution monitor-
ing subsystem (Talamadupula et al. 2010; Kraft et al. 2008).
For the purpose of planning, sensing is modelled determin-
istically, and beliefs about the underlying state are modelled
qualitatively. We are not aware of any robot system that
features both a unifying probabilistic representation, and a
domain-independent planner which is able to reason quickly
over that unified decision-theoretic model to generate be-
haviour.

Object search with mobile robots has been studied for al-
most 20 years (Shubina and Tsotsos 2010), yet no previous
system reasons with uncertain conceptual knowledge about
room and object categories. Instead, most dedicated systems
treat the problem as a geometric one. Closest to our ap-
proach is the work by Sjöö et al. (2010) who used common-
sense knowledge encoded into a rule-based ontology to in-
form a deterministic planner which previously categorised
room to search for a particular object. Bouguerra, Karlsson,
and Saffiotti (2007) extended this approach to treat some of
the conceptual knowledge as uncertain, although restricted
to the number of occurrences of object types in rooms. Va-
sudevan and Siegwart (2008) went beyond this to perform
room categorisation through Bayesian reasoning about the
presence of objects, but did not (as none of these did) in-
clude observation models in their reasoning (thus perception
was still considered to be deterministic).

The Dora System
In order to perform its object search task Dora is equipped
with a camera on a pan-tilt unit, a laser scanner, and one
laptop accommodating all the processes. The system archi-
tecture itself is an extension of PECAS (Hawes, Brenner,
and Sjöö 2009) composed of many components function-
ally structured into subarchitectures. In general, Dora fea-
tures speech understanding and dialogue components to re-
ceive commands from humans, a goal management subsys-
tem (Hanheide et al. 2010) translating commands into goals
for the planning subsystem, and many other utility compo-
nents whose description goes beyond the scope of this ex-
tended abstract. At the core of the system is the switching
planner. Its role is to deliberate Dora’s behaviour to ef-
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ficient object search, exploiting common-sense, relational,
and conceptual knowledge. It operates on the probabilis-
tic belief state defined by the conceptual layer of the spatial
representation. This probabilistic representation utilises a
chain graph model (Lauritzen and Richardson 2002) for in-
ference and integrates conceptual and instance knowledge as
detailed by Hanheide et al. (2011), with the latter continu-
ously being maintained by perceptual processes.

Among these are processes that maintain metric and topo-
logical maps (Pronobis et al. 2009). Following an approach
described by Hawes et al. (2011) the map is discretised into
places and rooms, yielding discrete instances to plan with.
Also, we employ a continuously running process recognis-
ing properties which are evident of the category of rooms
following work by Pronobis et al. (2010). Properties being
recognised here are the shape of rooms and their visual ap-
pearance. Also, we employ an object detector (Mörwald et
al. 2010), pre-trained for a set of 19 objects of interest. The
planning system can invoke this object detector as part of
a sensing action to get evidence about the existence of an
object in the current view of the robot.

The probabilistic relations in the conceptual layer have
to be quantified appropriately. For probabilistic relations
between instances and concepts these are derived from the
sensing processes. For the relations of common-sense and
conceptual knowledge we either derive them from training
sets or from harvesting information from the web. As will
be demonstrated, Dora is capable of exploiting the proba-
bilistic knowledge about the co-occurrence of objects and
rooms. This relation was quantified employing a combina-
tion of qualitative bootstrapping from the Open Mind Indoor
Common Sense database1 and queries to an online image
search engine. This offline acquisition process yields con-
ditional probabilities, such as P (room = kitchen|object =
cereal box) = 0.33.

The Switching Planner
To generate flexible goal-oriented behaviour our system em-
ploys a domain-independent planner. The object search sce-
nario poses several challenges to the planning system: On
the one hand, planning and execution monitoring must be
lightweight, robust, timely, and should span the lifetime of
the robot. Those processes must seamlessly accommodate
exogenous events, changing objectives, and the underlying
unpredictability of the environment. On the other hand, in
order to act intelligently the agent must perform computa-
tionally expensive reasoning about contingencies, and possi-
ble revisions of subjective belief according to quantitatively
modelled uncertainty in acting and sensing.

In our work we take a concrete step towards addressing
the challenges we outlined. We have developed a switching
domain-independent planning system that operates accord-
ing to the continual planning paradigm. It uses first-order
declarative problem and domain representations, expressed
in a novel extension of PPDDL (Younes et al. 2005) called
Decision-Theoretic (DT)PDDL, for modelling stochastic de-
cision problems that feature partial observability. The sys-

1http://openmind.hri-us.com/

Figure 1: An abstract view of the processes and represen-
tations of the system. Sensing processes (at the bottom)
discretise and categorise sensor input into instances (shown
as ellipses) and acquired relations in conceptual layer. This
layer also comprises knowledge about concepts (rectangles)
of which only an excerpt in shown. The switching planner
reasons upon the state distribution given by the conceptual
map.

tem switches, in the sense that the underlying planning pro-
cedure changes depending on our robot’s subjective degrees
of belief, and progress in plan execution. When the un-
derlying planner is a deterministic sequential planner, i.e.,
a classical planner, we say planning is in a sequential ses-
sion, and otherwise it is in a contingent session. Finally,
planning is continual in the usual sense that, whatever the
session, plans are adapted and rebuilt online in reaction to
changes to the planning model (e.g. when objectives are
modified, or when our robot’s path is obstructed by a door
being closed). By autonomously mixing these two types
of sessions our robot is able to be robust and responsive to
changes in its environment and make appropriate decisions
in the face of uncertainty. We will give a brief overview of
the approach, a more detailed description can be found in
the literature (Göbelbecker, Gretton, and Dearden 2011).

Sequential Planning
During a sequential session, a rewarding trace of a possible
execution is computed using a modified version of the cost-
optimising satisficing planner Fast Downward (Helmert
2006) which trades action costs, goal rewards, and deter-
minacy.

The planning model we use for specifying
the sequential planning problems is an extended
SAS+formalism (Bäckström and Nebel 1995). In contrast
to probabilities in more expressive models like MDPs,
actions do not have multiple possible outcomes, they just
can succeed with probability p(a) or transition into a sink
state with probability of 1 − p(a). “Real” probabilistic
actions can be approximated by creating a separate action
for every possible outcome (Yoon, Fern, and Givan 2007).
The planner plans according to a cost function c that
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weights the cost of a plan against its probability. There
are several possible choices for how to combine costs
and probabilities, we chose a function that resembles the
expected reward adjusted to our restricted planning model.
With R being a reward constant, we minimise the formula
c(π) =

∑
a∈π c(a) +R

(
1−

∏
a∈π p(a)

)
. For small values

ofR the planner will prefer cheaper but more unlikely plans,
for larger values more expensive plans will be considered.

Assumptions To model uncertain initial states (which are
an essential feature of exploration problems), we introduce
the concept of assumptive actions. The initial state of the
planning problem is the set of necessarily true propositions.
Assumptive actions are then used to add other, uncertain,
propositions (assumptions) to the state. Provided that the
plan is optimal, only assumptions that help achieving the
goal will be included, preferring ones that are more likely.

If, for example, the initial state contains uncertainty about
the category of a room, with P (cat(room) = kitchen) =
0.5, P (cat(room) = office) = 0.3 P (cat(room) =
corridor) = 0.2. We would then add the assumptions:

pre(a1) = pre(a2) = pre(a3) = {defcat(room) = ⊥}
eff(a1) ={cat(room) = kitchen,defcat(room) = >}
p(a1) =0.5 c(a1) = 0

eff(a2) ={cat(room) = office,defcat(room) = >}
p(a2) =0.3 c(a2) = 0

eff(a3) ={cat(room) = corridor,defcat(room) = >}
p(a3) =0.2 c(a3) = 0

The def-variable makes sure that we cannot make more
than one assumption about the same variable.

To utilise background conceptual knowledge, e.g. the
probability of finding an object in a certain type of room,
we use operators that model the conditional dependencies2:

(:action object-in-room
:parameters (?cl - class ?r - room

?c - category)
:probability (P-obj-given-category ?cl ?c)
:precondition (= (cat ?r) ?c)
:effect (obj-exists ?cl in ?r))

where (P-obj-given-category ?cl ?c) are
fluents containing the probabilities. Using these operators,
we do not have to construct the entire initial state descrip-
tion of the problem explicitely (as we did in the original
description of the switching planner).

The system always begins with a sequential session, and
once Fast Downward produces a trace, plan execution pro-
ceeds by applying actions from that trace in sequence until
the applicability of the next scheduled action is too uncer-
tain according to a threshold parameter (here, set at 95%).
A contingent session then begins which tailors sensory pro-
cessing to determine whether the assumptions made in the

2def-conditions and effects are omitted for clarity

(a) BHAM: 19 runs. (b) KTH: 10 runs.

Figure 2: Box and whisker diagrams of total runtime to
achieve the given task in two environments comparing the
’full’ system (FC) to the ’lesioned’ case (LC).

trace hold, or which otherwise acts to achieve the overall
objectives.

Contingent Planning
Because decision-theoretic planning in large problems is too
slow for our purpose (we seek response times in seconds),
contingent sessions plan in an abstract decision process de-
termined by the current trace and underlying belief-state.
This abstraction is constructed by first excluding all propo-
sitions that are not true of any state in the trace, then adding
them back, using as a heuristic the entropy of the trace as-
sumptions conditional on a candidate proposition. Proposi-
tions are added, one at a time, until the number of states in
the initial belief-state reaches a given threshold (here, 150
states). To the resulting abstract model we also add dis-
confirm and confirm actions that the contingent session can
schedule in order to judge an atomic assumption in the trace.
In the abstract model these actions yield a small reward if
the corresponding judgement is true (or small penalty other-
wise). Once a judgement action is scheduled for execution
the contingent session is terminated, and control is returned
to a sequential session.

Experimental Evaluation
In order to test the effectiveness of (i) exploiting default
probabilistic knowledge in a conceptual layer of our repre-
sentation, (ii) the switching planner, and (iii) our implemen-
tation of the overall system, we ran two configurations (’full’
and ’lesioned’) of the system in two natural world environ-
ments; a residential house in Birmingham (BHAM) and a
floor of offices and a kitchen at KTH Stockholm (KTH).

Our evaluation compares the full system with a lesioned
system in which the categorisation of visual appearance
and shape properties has been disabled, emulating the lim-
ited reasoning capabilities available in our previous sys-
tem (Hawes et al. 2011), where no such evidence was avail-
able. The task in all these runs was to find a box of corn-
flakes. The starting position of the robot was either the living
room (in BHAM) or an office (in KTH), i.e. rooms that ac-
cording to the acquired common-sense knowledge are quite
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unlikely to contain objects of type cornflakes. This was cho-
sen to showcase the benefit of the probabilistic representa-
tion and planning.

Fig. 2 shows the overall runtime to complete the object
search task in the lesioned (denoted as ’LC’ in the figure)
and the full system (’FC’) in both environments. What
can clearly be seen from the figure is that the full system
which can exploit the evidence about the categories of rooms
achieves the task significantly faster (Mann-Whitney test
p < 0.01 for both environments) on average. It benefits from
the probabilistic common-sense knowledge that it is quite
unlikely to find cornflakes in the room the robot was in and
made it decide to first drive to the kitchen to start the search
there. On the contrary, in the lesioned case the robot had less
information and had to conduct a full exhaustive search. So
it started its search in the living room or office, respectively,
because the object is as likely to be in this room than in any
other. Further details and a more exhaustive analysis of the
results are given in (Hanheide et al. 2011).
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Abstract

This document presents a demo storyboard for an ac-
cepted paper in the ICAPS 2011. The paper presents
a method that builds a topological environment based
on the workspace to compute homotopy classes, which
topologically describe how paths go through the ob-
stacles in the workspace. Then, the homotopy classes
are sorted according to an heuristic estimation of their
lower bound. Only those with smaller lower bound are
used to guide a planner based on the Rapidly-exploring
Random Tree (RRT), called Homotopic RRT (HRRT),
to compute the path in the workspace. The demo consist
of a short presentation where the theoretical concepts of
our paper are explained and an execution of an applica-
tion that applies the whole method in bitmap scenarios1.

Introduction
This storyboard presents the practical part of a paper ac-
cepted in the ICAPS 2011 (Hernández, Carreras, and Ri-
dao 2011). The paper presents an extension of the method
to generate homotopy classes that can be followed in any
2D workspace. Two paths that share the start and the end
points belong to the same homotopy class if one can be
deformed into the other without encroaching any obstacle.
The homotopy classes generated are sorted according their
quality given by a lower bound estimator. In order to maxi-
mize the number of homotopy classes that can be explored,
we propose a path planner based on the RRT, called Homo-
topic RRT (HRRT), to generate paths in the workspace. The
HRRT algorithm starts looking for a path in the homotopy
class that has a high probability of containing the optimal
solution. Our method has been tested in several scenarios
and this demo will show up all the execution steps during
these tests.

The demo consists of two steps. First, there will be a small
presentation to introduce the goal of our research work, the
theoretical concepts of homotopy classes and how are they
generated in 2D workspaces. Then, there will be an applica-
tion to run the tests proposed in the paper and see how our
method overcomes each step of the process.

1The full paper describing this system appears in the ICAPS-
2011 Proceedings at pages 82-89.
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a) Reference frame b) Topological graph

Figure 1: Example of a reference frame and its correspon-
dent topological graph in a workspace with two obstacles.

Demo Presentation
We will briefly present in few slides the theoretical concepts
of the paper: the process of turning a metric space into a
topological graph (Figure 1), the generation of the homo-
topy classes and computation of their lower bound, and the
fundamentals of the HRRT path planning algorithm. The
presentation will also include a slide with the goal of our
method: its application to an Autonomous Underwater Ve-
hicle (AUV).

Demo Application
The execution of the demo application will allow the user to
see all the steps of the method we propose to compute paths
following homotopy classes. The user will be able to select
a scenario among a set of bitmaps, to select the start point
and goal point through a GUI, and to run the application.

The execution steps are these follows: Given a workspace,
our method computes the reference and its topological
graph. Both of them are shown in Figure 2 and in Fig-
ure 3 to easily understand how a metric environment can be
turned into a topological one. Using the topological graph
and knowing where the start and goal vertexes are (through
the location of the start and goal points in the workspace),
a set of homotopy classes will be computed. The computed
homotopy classes, shown in Table 1, change according to
the scenario and/or the start and goal points locations. Then,
the application will compute the lower bound for each ho-
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a) Scenario b) Reference frame

Figure 2: An environment where the obstacles have been
identified and its corresponding reference frame.

Index Homotopy class Lower buond
(pixels)

1 A5,0 A3,0 A4,0 A1,0 A2,0 295.658
2 A2,1 A1,1 B4,1 A3,1 A5,1 262.768
3 A2,1 A1,1 B4,1 A3,1 B5,2 280.403
4 A2,1 B1,2 B4,2 A3,2 A5,1 373.653
5 A2,1 B1,2 B4,2 A3,2 B5,2 357.347
6 A2,1 B1,2 B4,3 B3,3 A5,1 447.938
7 A2,1 B1,2 B4,3 B3,3 B5,2 386.538
8 B2,2 A1,1 B4,1 A3,1 A5,1 266.443
9 B2,2 A1,1 B4,1 A3,1 B5,2 283.623
10 B2,2 B1,2 B4,2 A3,2 A5,1 320.942
11 B2,2 B1,2 B4,2 A3,2 B5,2 304.636
12 B2,2 B1,2 B4,3 B3,3 A5,1 395.227
13 B2,2 B1,2 B4,3 B3,3 B5,2 333.827

Table 1: Homotopy classes of the scenario with with their
index and lower bound. Notice that the αks

/ βks
notation of

the paper is represented as Ak, s / Bk, s in the demo appli-
cation.

motopy class. The lower bound is used to set up a prefer-
ence order when computing the homotopy classes path in
the workspace. Finally, the user will see the execution of
the HRRT algorithm we propose in the paper. This part will
show the construction of the tree and the path found (Fig-
ure 4).
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Figure 3: Topological graph of the scenario generated with
Graphviz software.

a) HRRT tree b) HRRT path

Figure 4: Tree and path computed with the HRRT algorithm
for the homotopy class in Table 1 with the best lower bound
(index 2).
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Abstract

The ignoring delete lists relaxation is of paramount impor-
tance for both satisficing and optimal planning. In earlier
work (Hoffmann 2005), it was observed that the optimal re-
laxation heuristic h+ has amazing qualities in many classical
planning benchmarks, in particular pertaining to the complete
absence of local minima. The proofs of this are hand-made,
raising the question whether such proofs can be lead automat-
ically by domain analysis techniques. The TorchLight tool
answers this question in the affirmative.
The tool is based on a connection between causal graph struc-
ture and h+ topology. It distinguishes between global anal-
ysis and local analysis. Global analysis shows the absence
of local minima once and for all, for the entire state space
of a given planning task. Local analysis determines the per-
centage of individual sample states not on local minima, thus
allowing to make finer distinctions. Finally, diagnosis sum-
marizes structural reasons for analysis failure, thus indicating
domain aspects that may cause local minima.
Complementing the ICAPS’11 and JAIR papers on Torch-
Light (Hoffmann 2011b; 2011a), we provide a brief summary
of TorchLight’s workings and results, and illustrate its func-
tionalities with example output on some IPC benchmarks.

Introduction
The ignoring delete lists relaxation is of paramount impor-
tance for both satisficing and optimal planning (e.g., Bonet
and Geffner 2001; Hoffmann and Nebel 2001; Richter and
Westphal 2010; Helmert and Domshlak 2009). The plan-
ners based on it approximate, in a variety of ways, the opti-
mal relaxation heuristic h+ which itself is NP-hard to com-
pute. As was observed in earlier work (Hoffmann 2005), h+

has strong qualities in many classical planning benchmarks.
Figure 1 gives an overview of these results (omitting ADL
domains and including the more recent benchmarks Eleva-
tors and Transport (without action costs).

The results divide domains into classes along two di-
mensions. We will herein ignore the horizontal dimension,
which pertains to dead ends. The vertical dimension divides
the domains into three classes, with respect to the behavior
of exit distance, defined as d − 1 where d is the distance to
a state with strictly smaller h+ value. In the “easiest” bot-
tom class, there exist constant upper bounds on exit distance
from both, states on local minima and states on benches (flat
regions). In the figure, the bounds are given in square brack-
ets. For example, in Logistics, the bound for local minima is
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Figure 1: Overview of h+ topology (Hoffmann 2005).
0 – meaning that no local minima exist at all – and the bound
for benches is 1. In the middle class, a bound exists only for
local minima; that bound is 0 (no local minima) for all do-
mains shown. In the “hardest” top class, both local minima
and benches may take arbitrarily many steps to escape.

The proofs underlying Figure 1 are hand-made. For deal-
ing with unseen domains, the question arises whether we can
design domain analysis methods leading such proofs auto-
matically. The TorchLight tool answers this question in the
affirmative. The key to the analysis is a connection between
causal graph structure and h+ topology. In its most basic
form, the connection is this:
If the causal graph is acyclic, and every variable transition

is invertible, then there are no local minima under h+.
The proof of this result works in two steps. Step (A) iden-
tifies circumstances under which one can deduce from an
optimal relaxed plan for a state s that there exists a mono-
tone exit path, i.e., a path from s to a state s′ with h+(s′) <
h+(s) and where all intermediate states s′′ on the path have
h+(s′′) = h+(s). Step (B) devises causal graph based suffi-
cient criteria implying that analysis (A) will always succeed.
This scheme can be used to prove results stronger than the
above, allowing e.g. casual graph cycles arising (only) due
to transition “side effects” that are harmless in certain ways.

TorchLight distinguishes between global analysis and lo-
cal analysis. Global analysis shows the absence of local
minima once and for all, for the entire state space of a given
planning task. This is based on step (B) above. Local analy-
sis determines the percentage of individual sample states not
on local minima – we refer to this as the success rate – thus
allowing to make finer distinctions in planning tasks where
local minima do exist. To analyze a given sample state s, we
feed step (A) with the relaxed plan for s computed by FF’s
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Figure 2: Overview of TorchLight domain analysis results.
“*”: global analysis always succeeds; “+”: local analysis
always succeeds if provided an optimal relaxed plan; mean
success rates when sampling one state per domain instance.

heuristic function. Since this relaxed plan is not necessarily
optimal, this local analysis is approximate: if it succeeds,
there is no guarantee that s is indeed not a local minimum.

TorchLight is implemented in C based on FF. Its analy-
sis techniques rely on the finite-domain variable representa-
tion of planning. This is obtained from the PDDL input by
running Fast Downward’s translator (Helmert 2009). That
translation is the main bottleneck in TorchLight’s runtime
performance. Up to 100 sample states, in more than 96% of
the 1160 test instances in our experiment, the actual analysis
takes at most as much time as the translator.

Figure 2 gives an overview of TorchLight’s analysis re-
sults. The domains whose h+ topology is not known are
shown separately. For each domain, “*” and “+” indi-
cate domain-specific performance guarantees that we have
proved. The numbers give the per-domain average success
rates when taking a single sample state per instance. Clearly,
“harder” domains tend to have lower success rates.1

TorchLight’s diagnosis summarizes structural reasons for
analysis failure, thus indicating domain aspects that may
cause local minima. Since the tested criteria are sufficient
but not necessary, there is no correctness guarantee. Still, at
least for local analysis, the diagnosis can be quite accurate.
In Zenotravel, it always correctly identifies fuel consump-
tion as the problem. In Mprime and Mystery, most of the
time the same correct diagnosis is returned. In Satellite and
Rovers, it always reports the problem to be that switching on
an instrument, respectively taking an image, deletes calibra-
tion – precisely the only reason why local minima exist here.
In Blocksworld-Arm and Freecell, the diagnosis identifies
critical resources (“hand-empty” and “have-cellspace”).

We next exemplify global analysis, local analysis, and di-
agnosis, with example runs on IPC benchmarks. We close
the paper with a brief discussion of future work.

Global Analysis
Figure 3 gives verbatim output of TorchLight when run on
the largest Logistics instance from the 1998 competition (we
omit some parts of the output that are not relevant here).

1In Driverlog and Rovers, deep local minima do exist, but only
in awkward situations that don’t tend to arise in the IPC instances.
Hanoi and Blocksworld-NoArm are not actually easy to solve for
FF, and the absence of local minima is due to idiosyncratic reasons.

The reader familiar with FF will notice FF’s footprint in
this output. The run of Fast Downward’s translator is indi-
cated by TorchLight near the start of Figure 3. Once transla-
tion terminates, TorchLight reads Fast Downward’s interme-
diate output file, and matches the values of the finite-domain
variables against FF’s grounded facts (this involves a few
subtle but uninteresting implementation details).

As visible in Figure 3, TorchLight then builds some ba-
sic data structures pertaining to the support graph (SG),
a simple variant of causal graphs, and the domain transi-
tion graphs (DTG) as known from Fast Downward (Helmert
2006). It then sets some basic properties of these structures,
for example annotating every individual DTG transition with
a flag indicating whether or not the transition is invertible.

Once the basic structures are built and analyzed, Torch-
Light runs global analysis. This works by enumerating
all global dependency graphs (gDG). A global dependency
graph is a sub-graph of the support graph that, starting from
some goal variable x0, recursively includes all transitive pre-
decessors of x0. The gDG is called successful if it does not
contain any cycles, and satisfies a number of supplementary
criteria implying that analysis (A), cf. the above, will suc-
ceed. If, and only if, all gDGs are successful – i.e., if as
shown here the percentage of successful gDGs is 100% –
then it is proved that the state space does not contain any lo-
cal minima under h+.2 Further, each gDG delivers a bound
on the exit distance. Maximizing this bound over all gDGs
delivers a bound that is valid across the whole state space.
In the shown Logistics example, that bound is 1. That same
bound would be returned for any Logistics instance, i.e.,
TorchLight here always finds the exact bound as proved by
hand (cf. Figure 1).

Note that the shown instance is huge. FF generates almost
a million “action templates”, i.e., instantiated actions not yet
tested for (relaxed) reachability. This instance size is also
reflected in the 9.78 seconds runtime for Fast Downward’s
translator. By contrast, the actual analysis (i.e., the part of it
that we’re interested in right now) takes only 0.24 seconds.

As shown in Figure 2, global analysis succeeds in Logis-
tics, Miconic-STRIPS, Movie, and Simple-TSP. In all other
domains, however, the fraction of successful gDGs never
attains 100%. In these cases, nothing is proved, so those
gDGs that are successful may at best serve as an indication
of which aspects of the domain are “good-natured”.

Local Analysis
Local analysis is run on a set of random sample states. The
number R of such states is an input parameter to TorchLight.
Each state is sampled by executing K ∗hFF(sI) random ac-
tions, where K is another input parameter, sI is the initial
state, and hFF(sI) is FF’s heuristic value for that state. We
start in sI and keep selecting uniformly one of the applica-
ble actions at each state. The path length factor K is set
to 5 in our experiments. We have not played much with
this parameter; its value makes a difference mainly in do-
mains containing dead ends (like transportation with non-

2This is a strictly more general criterion than the one mentioned
in the introduction: if the causal graph is acyclic and all transitions
are invertible, then all gDGs are successful; but not vice versa.
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./torchlight -o domains/logistics/domain.pddl -f domains/logistics/p30.pddl

TorchLight: running Fast-Downward translator to generate variables ... done.
TorchLight: creating SG and DTG structures ... done.
TorchLight: static examination of SG and DTG structures ... done.

TorchLight guaranteed global analysis:
No local minima under h+, exit distance bound 1.
Percentage of successful x0/t0 gDGs : 100.00% (30780 of 30780)

Time spent: 0.14 seconds instantiating 912252 easy, 0 hard action templates
9.78 seconds in FD translator generating variables
0.24 seconds in guaranteed global analysis

Figure 3: Example run of TorchLight (global analysis) in the Logistics domain.

replenishable fuel), which may not be found if the random
walks are too short (we get back to this below).

Given a sample state s, and a relaxed plan P+(s) for s,
local analysis applies step (A) to identify whether or not
P+(s) complies with a special case implying the existence
of a monotone exit path from s. If so, we say that s is suc-
cessful. If P+(s) is optimal, then this analysis is sound,
i.e., for successful s an exit path as claimed is guaranteed
to exist. In TorchLight, P+(s) is returned by FF’s heuristic
function, thus P+(s) is not necessarily optimal, thus the lo-
cal analysis is approximate.3 If s has no relaxed plan at all,
then we count the state as unsuccessful.

Upon analyzing all sample states, TorchLight outputs the
success rate as well as the min/mean/max exit distance
bound identified. Figure 4 gives verbatim output for in-
stances from Transport, Blocksworld-Arm, and Mystery.

Figure 4 (a) shows the output for the largest Transport in-
stance of IPC’08. The “-s 100” in the command line gives
the number of sample states (called R herein); the default
value is R = 10. We see that all sample states are success-
ful, indicating (rightly) the absence of local minima. The
largest exit distance bound is 2, however most states have
a smaller bound, as indicated by the mean 0.16. Exit dis-
tance in Transport relates to the number of vehicle moves
needed in order to load/unload the next package. That num-
ber can easily be constructed to be large, however apparently
this does not tend to happen in the present IPC benchmark
instances. As before, we see that Fast Downward’s transla-
tor constitutes by far the most costly part of the computation.
Note, though, that the sampling procedure also takes consid-
erable time (spent in the generation of applicable actions).

In Figure 4 (b), we see a domain, Blocksworld-Arm as
run in IPC’00, that does contain local minima under h+,
and where, thus, global analysis is necessarily useless – it
can only ever answer “sorry no success”. By contrast, ap-
proximate local analysis returns interesting information, in
terms of the success rate: 25% on one of the largest IPC’00
instance as run here (60 blocks). This indicates (rightly) that
there are many states on local minima. Note that, for the
25% successful states, the exit distance is constantly 0, i.e.,
these are situations where h+ can be decreased directly due

3TorchLight also implements a version of local analysis guar-
anteed to be sound. This is based on a localized variant of global
dependency graphs. We do not discuss this here since the empirical
results are not promising – this local analysis tends to apply only
in those domains successfully analyzed by global analysis anyway.

to some simple action that is not intrusive anywhere else.
Consider finally Figure 4 (c), which illustrates the role of

dead ends. The Mystery domain of IPC’98, encoding trans-
portation with consumption of non-replenishable fuel, is a
classical example of a domain containing such states. Fig-
ure 4 (c) shows the run of TorchLight on one of the largest
IPC’98 instances (these are not ordered strictly by increas-
ing size). Like in Blocksworld-Arm, the success rate is very
low, 34% in this case, rightly indicating the complex nature
of the search space surface. However, this time that behavior
is mostly due to the presence of dead ends among the sample
states, and due to the capability of relaxed planning to recog-
nize these. As visible in the output, 57% of the sample states
are recognized to be dead ends. Of the remaining 43 sam-
ple states (remember that our total is 100), 34 are successful
(and 9 are not). If we sample the states less deeply, by set-
ting K in the random path length K ∗ hFF(sI) to K = 1
instead of K = 5, then only 4 sample states have no relaxed
plan, and the success rate skyrockets to 78%.

Diagnosis
There is a variety of information sources in TorchLight that
could be used for diagnosis, that is, for the identification
of domain features that are good-natured/bad-natured. So
far, only a first exploration of this has been made, and only
in the context of approximate local analysis. We have im-
plemented a few first-shot methods identifying which op-
erators and variables were involved in the reasons for suc-
cess/failure of such analyses, in the sample states.

Judging from our current results, the most useful one
of these methods reports operators that were “harmful” in
the analysis, in that they had “side-effects” preventing them
from use in the special case identified by step (A). As an
example, consider an operator moving a vehicle, whose in-
tended effect is to change the position of the vehicle, but that
has a harmful side effect consuming fuel. The diagnosis re-
ports the name of the operator, along with the name of the
predicate affected by the harmful effect. It maintains occur-
rence counts of these operator-predicate pairs, and weighs
these pairs by frequency in order to provide some measure of
“importance”. Figure 5 gives verbatim output for instances
from Mprime, Rovers, and Freecell.

Consider Figure 5 (a). Like Mystery, Mprime encodes
transportation with consumption of non-replenishable fuel.
In both domains, the available fuel units are associated
with locations, rather than with vehicles (the only differ-
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./torchlight -o domains/transport/domain.pddl -f domains/transport/p30.pddl -s 100

TorchLight approximate local analysis of sampled states:
Success and hence no local minima under h+: 100.00%
Dead-end states: 0.00%
Exit distance bound min: 0, mean: 0.16, max: 2

Time spent: 0.01 seconds instantiating 39304 easy, 0 hard action templates
11.79 seconds in FD translator generating variables
3.37 seconds sampling states
0.52 seconds in approximate local analysis of sample states

(a) Transport
./torchlight -o domains/blocksworld/domain.pddl -f domains/blocksworld/p61.pddl -s 100

TorchLight approximate local analysis of sampled states:
Success and hence no local minima under h+: 25.00%
Dead-end states: 0.00%
Exit distance bound min: 0, mean: 0.00, max: 0

Time spent: 0.00 seconds instantiating 7260 easy, 0 hard action templates
2.33 seconds in FD translator generating variables
0.83 seconds sampling states
2.38 seconds in approximate local analysis of sample states

(b) Blocksworld-Arm
./torchlight -o domains/mystery/domain.pddl -f domains/mystery/p13.pddl -s 100

TorchLight approximate local analysis of sampled states:
Success and hence no local minima under h+: 34.00%
Dead-end states: 57.00%
Exit distance bound min: 0, mean: 0.00, max: 0

Time spent: 0.03 seconds instantiating 43554 easy, 0 hard action templates
4.83 seconds in FD translator generating variables
0.27 seconds sampling states
0.05 seconds in approximate local analysis of sample states

(c) Mystery
Figure 4: Example runs of TorchLight (approximate local analysis) in the Transport, Blocksworld-Arm, and Mystery domains.

ence is that Mprime has an operator allowing to transfer
fuel between locations). To discourage planner developers
in IPC’98 from analyzing domains and designing domain-
specific heuristics, the semantics of both domains was dis-
guised behind meaningless names. One undesirable side
effect of this security measure is that the verbatim output
in Figure 5 (a) is, also, meaningless. According to Derek
Long, more precisely to Long and Fox’s (2000) synthesis of
generic types, the “feast” operator in Mprime corresponds
to a vehicle move, and the “locale” predicate corresponds to
the level of available fuel. Thus the analysis in Figure 5 (a)
correctly reports the problem to be fuel consumption.4

Figure 5 (b) demonstrates a case where the diagnosis iden-
tifies a very particular reason for the existence of local min-
ima. Namely, in Rovers, the only reason for their existence
is that taking an image has the harmful side-effect of delet-
ing camera calibration. If the same camera is, without a vi-
able alternative, required to take another image, and if re-
calibrating the camera involves changing the rover position

4This is not always the case, due to the peculiar encoding of fuel
pertaining to locations rather than vehicles. This sometimes tricks
the diagnosis into thinking that it’s moving away from locations,
not fuel consumption, causes the local minima. This never happens
in Zenotravel, where fuel pertains to vehicles as one would expect.

and thus incurs additional costs, then this side effect may re-
sult in a local minimum: the relaxed plan prior to taking the
image did not take into account the need to re-calibrate, so
after taking the image the relaxed plan length increases. The
diagnosis correctly identifies exactly the culprit operator ef-
fect. Note, though, that we set R = 1000 here. The reason
for this is that this kind of awkward situation happens only
rarely, so we need a large number of sample states in order
to find it. (Even with R = 1000, we obtain any diagno-
sis only in 8 of the 20 IPC’02 Rovers instances.) Note that,
with such large R, the runtime advantage of analysis over
Fast Downward disappears (in this example at least).

Consider finally Figure 5 (c), in which we demonstrate a
case where weighing operator-predicate pairs by frequency
is important. Obviously, a major difficulty when playing
Freecell is that, when sending a card to a free cell, then
the desired effect – making space where the card previously
was – is countered by the undesired side-effect of consum-
ing space where the card now is. This is reflected in the
diagnosis by the operator-predicate pair “SENDTOFREE
(CELLSPACE)”. However, there are many other operator-
predicate pairs in the diagnosis that are not that sensible, or
not sensible at all. For example, “SENDTOFREE (ON)”
suggests that, when sending a card to a free cell, the effect
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./torchlight -o domains/mprime/domain.pddl -f domains/mprime/p34.pddl -D

Top weighted non-recovered op/predicate in approximate local analysis:
100.00% of weight -- FEAST (LOCALE)

Time spent: 0.02 seconds instantiating 8964 easy, 0 hard action templates
1.41 seconds in FD translator generating variables
0.00 seconds sampling states
0.00 seconds in approximate local analysis of sample states

(a) Mprime
./torchlight -o domains/rovers/domain.pddl -f domains/rovers/p19.pddl -D -s 1000

Top weighted non-recovered op/predicate in approximate local analysis:
100.00% of weight -- TAKE_IMAGE (CALIBRATED)

Time spent: 0.02 seconds instantiating 4476 easy, 0 hard action templates
0.86 seconds in FD translator generating variables
0.77 seconds sampling states
0.21 seconds in approximate local analysis of sample states

(b) Rovers
./torchlight -o domains/freecell/domain.pddl -f domains/freecell/p79.pddl -D

Top weighted non-recovered op/predicate in approximate local analysis:
58.33% of weight -- SENDTOFREE (CELLSPACE)
33.33% of weight -- SENDTOFREE (CLEAR)
8.33% of weight -- SENDTOFREE (ON)

Time spent: 0.05 seconds instantiating 182188 easy, 0 hard action templates
9.63 seconds in FD translator generating variables
0.14 seconds sampling states
0.02 seconds in approximate local analysis of sample states

(c) Freecell

Figure 5: Example runs of TorchLight (diagnosis) in the Mprime, Rovers, and Freecell domains. In Mprime, the “feast”
operator corresponds to a vehicle move, and the “locale” predicate corresponds to the level of available fuel.

causing trouble is the one removing the card from its previ-
ous location. In the example shown, this incorrect diagnosis
receives a much smaller weight than the correct one.

Discussion

TorchLight is a new tool whose mission is to analyze search
space topology without running any search. What renders
this “mission impossible” possible is the observation that
causal graphs can be used to characterize rich planning sub-
classes in which there exist no local minima under h+.

Apart from furthering our understanding of what makes
planning tasks amenable to current heuristic search tech-
niques, such analysis has manifold potential practical uses.
In particular, these include: the targeted generation of
macro-actions by constructing the identified exit paths; plan-
ner performance prediction by machine learning over the
generated features; automatic planner/search configuration,
even on-line during search since analyzing a single relaxed
plan already delivers useful information; automatic problem
abstraction by removing (some) harmful effects identified
by diagnosis; automatic domain reformulation by using the
generated features as reformulation guidance; and PDDL
modeling support for end-users by integrating diagnosis as
feedback into a modeling environment.
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Abstract

We present an automated ship scheduling system – DUKC R©

Optimiser – which selects sailing times for a set of cargo
ships at a port, so as to maximise total cargo throughput while
meeting port operational and safety guidelines, as well as pro-
ducing schedules that are fair to all companies using the port.
The system has been developed by maritime engineering
company OMC International, incorporating elements of the
author’s PhD research at the Australian National University
and NICTA. A prototype of the system has undergone user
testing in late 2010, and is planned to undergo further devel-
opment in order to include additional functionality and incor-
porate results into a web-based ship management system.
DUKC R© Optimiser is the first ship scheduling system that
accounts for environmentally-dependent constraints on the
times when ships can enter or leave a port. The sys-
tem uses OMC’s existing Dynamic Under-Keel Clearance
(DUKC R©) software to calculate sailing windows for each
ship. The results of the DUKC R© calculations are then con-
verted into a Mixed-Integer Programming model, formulated
in the MiniZinc modelling language, and solved using the
G12 constraint optimisation solver.

Ship Scheduling Background
Ship scheduling deals with assigning sailing times to a fleet
of ships, as well as optionally the amount and type of cargo
that each ship carries. Ship scheduling is a problem with
significant real-world impact, as the majority of the world’s
international trade is transported by sea, so even a small im-
provement in schedule efficiency can have significant bene-
fits to industry (Christiansen, Fagerholt, and Ronen 2004).

One consideration in ship scheduling is that most ports
have restrictions on the draft of ships that are able to safely
enter the port. Draft is the distance between the waterline
and the ship’s keel, and is a function of the amount of cargo
loaded onto the ship. Ships with a deep draft risk running
aground when entering or leaving the port, therefore most
ports restrict the draft of ships allowed to transit through the
port.

In existing ship scheduling algorithms, draft constraints
have only been considered in trivial ways, for example, as-

suming that a given port will always allow ships with a draft
of 13 metres or less, and never allow ships with deeper drafts
to enter (Fisher and Rosenwein 1989). Other ship schedul-
ing algorithms leave draft constraints entirely up to human
schedulers (Fagerholt 2004).

In practice, most ports restrict ship sailing drafts using
safety rules that estimate the under-keel clearance (UKC) –
the depth of water under a ship’s keel. In recent years, OMC
International has developed algorithms to accurately calcu-
late under-keel clearance using real-time environmental con-
ditions. OMC’s Dynamic Under-Keel Clearance (DUKC R©)
software allows significantly more cargo to be loaded safely
onto each vessel compared to the static UKC rules previ-
ously used by most ports, which don’t take real-time envi-
ronmental data into account (OMC 2011). However, ship
scheduling has not been able to take advantage of these re-
cent improvements in UKC estimation, due to not consider-
ing complex time-varying draft constraints.

In this presentation, we demonstrate the DUKC R© Opti-
miser software, which is the first ship scheduling system that
can take environmentally-dependent time-varying draft con-
straints into account.

Dynamic Under-Keel Clearance
Figure 1 illustrates all aspects of ship motion taken into
account by the Dynamic Under-Keel Clearance (DUKC R©)
software in calculating under-keel clearance. Components
of ship motion taken into account by the DUKC R© software
include:

Draft: the distance from the waterline to the bottom of the
ship’s keel.

Squat: a phenomenon caused by the Bernoulli effect
which causes a ship travelling fast through shallow water
to sink deeper into the water than a ship travelling slowly.

Heel: the effect of a ship leaning towards one side, caused
by the centripetal force of turning, or the force of wind on
the side of the ship.

Wave Response: the motion resulting from the action of
waves on the ship. Only the vertical component of this
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Figure 1: Dynamic Under-Keel Clearance Components

motion affects under-keel clearance.

Under-keel clearance is computed as follows:
UKC = Tide + Depth - Draft - Squat - Heel - Wave

Response
The Bottom Clearance and Manoueverability Margin

shown in Figure 1 are safety factors that ensure the ship
has sufficient distance from the highest points on the chan-
nel bottom (Bottom Clearance) and that there is sufficient
water around the ship to maintain good manoeuverabil-
ity (Manoueverability Margin). If the under-keel clearance
is below either the Bottom Clearance or Manoueverability
Margin safety limits, then the DUKC R© software will advise
the operator not to sail. However, the DUKC R© software
only provides navigational advice; the final decision always
rests with the ship’s pilot or captain.

For a more detailed analysis of Dynamic Under-Keel
Clearance methodology, see (O’Brien 2002).

System Architecture
The initial prototype of DUKC R© Optimiser is a command
line application which uses Microsoft Excel input and out-
put files as a simple “GUI”. Excel was used in place of a
customised GUI in order to deliver a prototype for user test-
ing as quickly as possible; the system is planned to be incor-
porated into a web-based under-keel clearance management

Figure 2: DUKC R© Optimiser System Architecture

system in future development. See Figure 3 for a mockup of
what a future GUI may look like.

The scheduler inputs data about each ship into an Excel
spreadsheet, which is then read by DUKC R© Optimiser and
converted into a set of queries to OMC’s DUKC R© software.
The DUKC R© software reads real-time environmental fore-
casts and measurements from databases, and uses these to
analyse each ship’s motion in response to the predicted tide,
wave and current conditions. The results of this analysis is
used to calculate under-keel clearance – the amount of water
under the ship at each point in the transit – and thus to deter-
mine sailing windows for a range of drafts for each ship.

DUKC R© Optimiser then converts the user inputs and the
results of the DUKC R© calculations into a Mixed Integer
Programming (MIP) model, implemented in the MiniZinc
optimisation language (Nethercote et al. 2007). This model
is then solved using the G12 constraint optimisation plat-
form (Stuckey et al. 2005).

MIP Formalisation
The MIP formalisation of the ship scheduling problem in-
cludes constraints on the valid range of drafts for each ship,
as well as on the sailing draft allowed at each time for each
ship by the port’s safety rules. Each ship has a minimum
and maximum draft range, determined by physical limita-
tions such as the size and shape of the ship, as well as an
earliest sailing time, which depends on when the ship fin-
ishes loading.
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Figure 3: Example GUI: Output

The model also incorporates other parameters represent-
ing the port’s geometry and operational procedures, includ-
ing locations of significant shallow or narrow points along
the channel, travel times between waypoints, and minimum
required separation times between ships passing a given
waypoint. Constraints on these parameters ensure that ships
do not pass through each other, and stay far enough apart to
meet the port’s safety guidelines.

Objective Function
The objective function for the ship scheduling problem
varies per port. Some ports may have an objective function
that purely optimises throughput; other ports may need to
prioritise fairness to competing clients above optimising the
total throughput for the port.

One example of an objective function optimises the total
cargo throughput at the port by maximising the sum of the
drafts, weighted by the tonnage per centimetre of draft, since
the amount of extra cargo allowed by an increase in draft
varies depending on the size and shape of the ship.

An alternative objective function, for a port with more
complex operating procedures, allows shipping agents to re-
quest minimum drafts for each ship, for example to meet
contractual obligations. Ships are allocated sailing slots
based on priority, which is determined by the port’s fairness
rules.

Future Development
Future development of the system will include incorporating
additional resource constraints to account for tugs, which are
used to assist ships entering or leaving the port. Initial user
testing conducted in late 2010 found that in some situations,
the need to wait for tugs to return from a job constrains the
schedule. Therefore tugs need to be incorporated before the
system can be used in operation.

Another future development will be to incorporate the
system into a web-based under-keel clearance management
system, to improve the usability of DUKC R© Optimiser for
operational use. In the demonstration, we will use mockup
screenshots from the future GUI to demonstrate system be-
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haviour, even though the GUI itself has not yet been devel-
oped.

A mockup GUI showing input data and an output sched-
ule for a set of six ships sailing on one tide is shown in fig-
ure 3.
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Abstract

The paper introduces a system for supporting the diag-
nostics and maintenance of wind farms. The work flow
in the system covers the detection of failures based on
data registered by the SCADA supervisory system of
the turbines, the assignment of maintenance tasks to
each failure, the scheduling of maintenance tasks on
the short-term horizon, and the reporting of mainte-
nance task execution. Finally, various reports are gener-
ated from the data collected throughout the above pro-
cess about the reliability and maintainability of the tur-
bines. In this paper, the primary focus is on mainte-
nance scheduling, using a fine-grained representation of
all requirements of the tasks, including resources, spare
parts, weather, as well as turbine conditions.

Introduction

Efficient maintenance is crucial for the economic operation
of wind energy systems. Wind farm operators must con-
tinuously monitor the condition of their turbines, detect if
a turbine needs maintenance, and determine the appropri-
ate maintenance action to be performed. Furthermore, the
optimal timing and assignment of maintenance tasks to re-
sources must be computed. Maintenance scheduling is not
only an important, but also a complex problem. The sched-
uler must consider the availability of various resources,
spare parts, and appropriate skilled personnel, while mini-
mizing the disruptions caused in production.

The paper introduces an integrated system for the diag-
nosis and maintenance of wind farms. The system, called
WindMT, has been developed recently in an EU-funded
research project aimed at the improvement of the reliability
of wind energy systems, involving wind turbine manu-
facturers, component suppliers, and research institutes1.
Below we present the key functionalities of the system,
briefly describe the models and algorithms for maintenance
scheduling, give some technical details about the developed
system, and summarize the screenplay of the planned live
demonstration at ICAPS 2011.

Integrated System for Diagnosis and
Maintenance

The system performs failure detection and prognosis on
quasi-online data from the SCADA supervisory system. In
case a failure is detected or prognosed, it assists human ex-
perts in initiating the corresponding corrective or predic-
tive maintenance tasks–the available digitized knowledge on
mapping failures to tasks is not reliable enough to com-
pletely automate this step. Other planned tasks, such as pre-
ventive maintenance or retrofitting originate from the ERP
system. The developed system schedules the maintenance
tasks on a short term horizon so as to minimize production
loss due to failures and maintenance. The execution of main-
tenance tasks is tracked, during which technicians provide
valuable detailed information on the nature of the failure,
the failed component, and the actual execution of the task,
such as its duration and the usage of spare parts. The work
flow is summarized in Figure 1.

Failure Detection 

& 

Prognosis

Failure and 

Maintenance

Mapping

Maintenance

Scheduling

Tracking of 

Maintenance

Execution

Figure 1: Key functionalities and the work flow in the sys-
tem.

The integrated handling of failures, maintenance, and ex-
ecution makes it possible to feed back the acquired knowl-
edge in order to improve failure detection and prognosis
models, the mapping of failures to maintenance tasks, the
definition of the maintenance tasks, and through component
reliability statistics, even the turbine design. Therefore, the
system not only supports the daily operation of the turbines,
but it is also a key element for achieving the long-term digi-
tization objectives of the wind farm owner and maintenance
service provider companies. Hence, this system represents a
significant step towards the practical implementation of the
vision stated in (Takata et al. 2004) that maintenance should

1For further details, check www.reliawind.eu.
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be a key element of the life cycle management of the prod-
ucts.

Maintenance Scheduling
Modeling the Scheduling Problem
The WindMT system is responsible for the diagnosis and
maintenance of multiple wind farms in an area, supervised
by the same regional office of the wind farm operator com-
pany. There are typically up to 20 farms with at most 300 tur-
bines belonging to a regional office. Since different offices
share their resources only in exceptional cases, the schedul-
ing problems of different offices can be modeled as indepen-
dent.

A detailed maintenance schedule is prepared for a short-
term horizon of 3-7 days, on a rolling horizon basis. The
schedule is updated every morning, which implies that usu-
ally only the tasks of the first day are executed as planned.
A key reason for not updating the schedule within the day
is that technicians have limited connectivity to the office,
therefore notifying them about the modified schedule and
acquiring feedback about the execution status in real-time is
impossible. Potential changes in the schedule will be man-
aged manually by the experts in the regional office. Fur-
thermore, despite the obvious uncertainties in the schedul-
ing problem, all parameters–including weather conditions
and spare part availability–are assumed to be deterministic
within the day.

The developed model covers all types of maintenance,
including corrective (repairing a failure), preventive (per-
forming periodical maintenance to safeguard from failures)
and predictive (condition-based preventive) maintenance, as
well as retrofits (upgrading the turbine). From the schedul-
ing perspective, the only difference between these types of
maintenance is that corrective maintenance is timely imme-
diately when the task is generated, whereas other, planned
maintenance tasks have a target date and an opportunity win-
dow, i.e., a time window around the target date in which the
task should be executed.

Tasks require different kinds of resources, such as skilled
personnel, spare parts, and special equipment. Tasks are ex-
ecuted by technicians, working in fixed teams of two people.
A team can execute only one task at a time, and it must fin-
ish the task before moving to the location of the next task.
However, there are a few extremely long tasks that can be
broken into smaller segments or even preempted, i.e., the
team may execute another task if circumstances are unsuit-
able for working on the large task. Traveling from one farm
to another one takes a given amount of travel time, whereas
the time of travel within the farm can be neglected.

Spare parts are assigned to tasks before scheduling would
take place, hence, they imply a release time for the tasks.
The availability interval of some special equipment, such as
external cranes, may also be limited, hence, the equipment
also entails time windows and capacity constraints for the
tasks.

An interesting and highly domain specific feature of the
scheduling problem is the dependence of maintenance tasks
on weather conditions, such as wind speed or temperature.

For instance, tasks requiring an outer crane can be executed
in calm winds only. Hence, the forecasted weather defines
the time periods when certain tasks can be executed. Fur-
thermore, wind speed determines the energy produced by a
turbine, and hence, the production loss in periods when the
turbine is affected by a failure or stopped for maintenance.
More precisely, the production loss incurred by a failure in
any period of time can be estimated from the forecasted wind
speed, the turbine characteristics, and a loss percent assigned
to the failure. Note that multiple tasks/failures can affect the
turbine at the same time.

Finally, sets of tasks may interfere beyond competition
for common resources as well. Namely, some tasks are ex-
ecutable only when the turbine is (or even multiple turbines
are) in a special condition, e.g., with no pressure in the hy-
draulic system. Pairs of tasks can be executable in parallel
only if the turbine conditions are compatible.

Scheduling consists in determining the set of tasks that
should be executed within the scheduling horizon and as-
signing a team and a start time to them, so as to minimize
the total production loss, including the due to failures and
due to stopping the turbine for maintenance.

Solution Approach
The scheduler uses a combination of mixed-integer pro-
gramming (MIP) and custom heuristics for solving the above
scheduling problem. The core problem is encoded as a MIP
using a time-indexed formulation, and it is solved by the
default branch and bound algorithm of a commercial MIP
solver package. The MIP model is presented in detail in
(Kovács et al. 2011).

The heuristics perform the pre-processing of the input
problem and the post-processing of the schedule computed
by the MIP as follows:

• In practice technicians move within a small set of
nearby farms only. Often, the bipartite graph of allowed
technician-farm assignments contains multiple indepen-
dent components, which means that the scheduling prob-
lem can be decomposed to sub-problems corresponding
to zones within the region. In case of very large compo-
nents, the algorithm forms independent zones by heuristi-
cally removing edges from the bipartite graph.

• In case of massively oversubscribed scheduling problems,
a heuristic omits the least important tasks. This way, the
total volume of tasks in the MIP will exceed the available
capacity by at most a given percent, 25% in the experi-
mental settings (travel times and other periods of forced
inactivity are ignored here). These heuristics ensure that
the size of the core problem faced by the MIP solver will
always be tractable.

• Since preemption is allowed for some extremely long
tasks, these tasks are partitioned to smaller segments and
precedence constraints are posted between the segments.

• In the post-processing step, a heuristic looks for potential
improvements of the schedule by re-partitioning and re-
assigning the above long tasks.
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In computational experiments with the core MIP, the
solver constructed exact optimal solutions for problem in-
stances with up to 50 tasks, as well as quality schedules with
relative gaps compared to the lower bounds well below 1%
for up to 100 tasks. In experiments with the complete solver
(including the MIP and the heuristic) the system could han-
dle problems with more than 1000 tasks, which is more than
what we expect in a real application.

The WindMT System
WindMT is a Java-based multi-tier application whose pre-
sentation layer runs in web browsers on PCs and PDAs (with
limited functionality in the latter). The application interfaces
with various IT systems of the wind turbine operator and the
maintenance service provider companies, including SCADA
supervisory system, the enterprise resource planning (ERP)
system, the maintenance management system, and a weather
forecast service, as shown in the system architecture dia-
gram in Figure 2. The scheduling algorithm is built on the
top of the ILOG Cplex 11.2 commercial MIP solver pack-
age. Figure 3 shows a screen shot of the system presenting
the template for the wind turbine breakdown structure, while
Figure 4 displays a screen shot of a Gantt chart representa-
tion of a maintenance schedule.

Figure 2: System architecture.

Demonstration
The demonstration planned for ICAPS 2011 covers the com-
plete work flow in the system, starting with the detection of
failures, manual and automatic assignment of maintenance
tasks to failures, scheduling the maintenance tasks, and fi-
nally, execution reporting. In addition, some reports based
on the data collected throughout the process will be shown.
The demo will be conducted on a small set of manually
forged sample data, which is representative but not identical
to real-life data of wind turbine manufacturers. Currently,

Figure 3: Screenshot of WindMT: tree-structured template of the wind energy system. The tree is rooted in a regional office, re-
sponsible for the maintenance of multiple wind farms in an area. Each farm consists of multiple wind turbines. The architecture
of a turbine is elaborated in the level of detail that is relevant for statistics about failure occurrences. Individual wind turbines
may differ arbitrarily from this template.
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Figure 4: Screenshot of WindMT: maintenance schedule displayed in a Gantt chart. Each of the upper rows contains the tasks to
be executed by a specific team in the next three days. The rows in the bottom display the availability of the resources required
by the selected task. It is also possible to manually edit the schedule on this screen.

the database of the system contains 100 wind turbines lo-
cated in 3 farms, ca. 50 failure modes, and master data about
25 different maintenance tasks.
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Figure 1: Basic Scenario

Abstract

We describe an Emergency Landing Planner (ELP) designed
to assist pilots in choosing the best emergency landing site
when damage occurs to an aircraft. In 2010, we integrated
the ELP into the cockpit of a 6 DOF full-motion simulator
for transport category aircraft, and performed experiments to
evaluate the software using crews of professional airline pi-
lots. We briefly describe how the ELP works, and show how
it was integrated into the avionics of the simulator.

1. The Scenario
Figure 1 illustrates the type of scenario that the Emergency
Landing Planner (ELP) addresses. When damage or fail-
ures occur in an aircraft an adaptive controller takes over to
help stabilize and control the aircraft. The pilots then invoke
the ELP using the Flight Management Computer. The ELP
provides the pilots with a ranked set of possible emergency
landing sites.

Fundamentally, the ELP solves a 3D path planning prob-
lem with dynamics. It does this by constructing a probabilis-
tic roadmap of points and edges that includes the current po-
sition of the aircraft and an approach point to every possible
runway within a viable range. (This may cover hundreds
of airports for an aircraft at high altitude.) A sophisticated
model of risk is used to assess the probability of success for

∗Stinger Ghaffarian Technologies
†Mission Critical Technologies

Figure 2: An example roadmap for an ELP scenario. The
vertical polygons are areas of thunderstorm or other weather
activity. Terrain obstacles (lower) are not shown.

each edge in the roadmap. This model of risk takes into ac-
count:

• Control capabilities of the (damaged) aircraft

• Weather conditions in the area (e.g. thunderstorms, turbu-
lence, icing)

• Ceiling, visibility and winds at each possible landing site

• Instrument approaches available at the site (if any)

• Characteristics of the landing site (runway length, width,
condition)

• Emergency facilities at the site (fire, medical)

• Danger to population along the approach path

The flight envelope plays a key role in the assessment of
risk for the different options. For example, if a damaged
aircraft must maintain a higher airspeed than normal, addi-
tional runway length is needed, and finding a runway with a
strong headwind is important in order to lower ground speed
at touchdown. Similarly, if the aircraft has limited ability to
bank to the right, a right crosswind or gusty conditions will
be problematic, as will paths that require sharp turns to the
right.
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Figure 3: The Advanced Concepts Flight Simulator (ACFS).

A∗ is used to search the roadmap to find the best landing
options. The g value for a given path is the product of the
probabilities of success for the legs in the path. The heuris-
tic value h is estimated using the probability of success for a
direct path to the approach point for each runway (assuming
no weather) times the probability of success for the approach
and landing on that runway. This heuristic value is admissi-
ble, and fairly informative.

The performance of the ELP is largely a function of the
number of points and edges in the roadmap. Currently, we
generate 2000 points and connect them to their 200 near-
est neighbors, which results in a roadmap with 400,000
edges. The A∗ search typically expands about 20 percent
of those edges for the scenarios we considered. With this
sized roadmap, the ELP produces an ordered list of options
for the pilot in under 10 seconds. This list can therefore be
refreshed and updated as often as desired, to account for the
aircraft movement, weather updates, or additional failures.

Our experience has been that paths generated from prob-
abilistic roadmaps of this density can be far from optimal,
and just don’t look very good when displayed. This prob-
lem can be addressed by dramatically increasing the density
of points and edges, but this approach also significantly in-
creases search time. The more practical solution is to use
local search to shorten and smooth paths. We do this local
search by constructing a second roadmap consisting only of
points along the path just found, creating a dense network
of edges among those points, and re-running A∗ on this re-
duced graph. The resulting paths are shorter, smoother, and
seem more natural when displayed.

More detail about the ELP, the path planner, the risk
model, and the local search can be found in (Meuleau et al.
2009; 2011a; 2011b)

Figure 4: The cockpit of the ACFS.

2. Integration
Figures 3 and 4 show the Advanced Concepts Flight Simula-
tor (ACFS) at NASA Ames Research Center. The simulator
is representative of modern glass cockpit twin engine com-
mercial transport aircraft such as the Boeing 757, 767, and
Airbus A320. The ELP was integrated into the avionics of
this simulator in order to conduct experiments with teams
of professional pilots with different damage scenarios and
weather conditions. Unfortunately, the ACFS is not very
portable, so for demonstration purposes, we use a reason-
ably high fidelity simulator that runs on a laptop. It includes
the Primary Flight Display, Navigation Display, and Flight
Management System common to modern glass cockpit air-
craft. Just as in the ACFS, this simulator incorporates an
adaptive controller, and has several damage models avail-
able.

A typical scenario involves starting the aircraft in cruise
flight following a flight plan like that shown on the Navi-
gation Display in Figure 5. A failure is then introduced as
illustrated in the surface position display shown in Figure 6.
In the case illustrated in Figure 6, the left wing is damaged
and the left aileron has failed (red).

When the damage occurs, the adaptive controller takes
over and stabilizes the aircraft. In the example illustrated,
the adaptive controller is adding right up aileron (blue) and
right spoilers (blue) to keep the aircraft from rolling left. To
help the pilots understand the control limitations of the dam-
aged aircraft, color bands are shown on the primary flight
display as illustrated in Figure 7. These color bands indi-
cate safe ranges for airspeed, bank angle and vertical speed.
In this case, the aircraft must maintain a much higher speed
than normal to keep sufficient airflow over the remaining
aileron. The ability to bank right is also very limited.

Pilots access the ELP from the Departure/Arrival page of
the Flight Management Computer as shown in Figure 8. Af-
ter a brief splash screen, a set of “Emergency Pages” is dis-
played, showing the options ordered from lowest to high-
est risk. Figure 9 shows the first of four emergency pages
for this scenario. Each entry shows an airport, runway, run-
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Figure 5: The Navigation Display showing the current route.

Figure 6: Surface position display showing status and de-
flection of control surfaces.

Figure 7: The Primary Flight Display (PFD) showing bank
angle, pitch, airspeed, vertical speed, altitude and heading.

Figure 8: The display for the Flight Management Computer
showing the Departures/Arrivals page for Denver (KDEN).
The emergency prompt appears next to button 6R at the
lower right.

Figure 9: The first of four emergency pages for a scenario.
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Figure 10: The Navigation Display showing both the current
route (magenta) and the new route being considered (dashed
white). Green, yellow, and orange areas indicate rain and
thunderstorm activity.

way length, distance, and direction (magnetic bearing). The
smaller symbols below each entry indicate the principle risks
associated with that option; for example, RL indicates run-
way length is an issue, and CE indicates that the cloud ceil-
ing is close to the minimums for the best approach to that
runway. To select an entry, the button to the left of the entry
is pressed. In this case, the first entry has been selected by
pressing button 1L, which causes the route for that option to
show up as a dashed white line on the Navigation Display,
as shown in Figure 10. Pressing the EXEC key would cause
the route to become the current route (solid magenta). The
pilots can page through the options using the NEXT PAGE
and PREV PAGE buttons as desired. To see more informa-
tion about a particular option, the pilots can press the button
to the right of the option, which brings up an airport infor-
mation page showing runway information and the current
weather at the airport (Figure 11).
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Abstract

Many planning tools developed as user-facing inter-
faces to automated planning systems do not allow users
enough flexibility to explore plans in a number of dif-
ferent ways, quickly understand complex sets of con-
straints and their implications, or experiment with dif-
ferent solutions without fear of losing work. Typically,
such tools are architected in such a way that the user in-
terface is integral to the underlying planning, schedul-
ing, and simulation engine(s). The Scheduling and Plan-
ning Interface for Exploration (SPIFe) is an integrated
planning and scheduling toolkit based on hundreds of
hours of expert observation, use, and refinement of
state-of-the-art planning and scheduling technology for
several applications within NASA. It was designed from
the ground up with the needs of the operational user in
mind, and it presents unique solutions to a number of
problems common in other commercial and homegrown
systems. SPIFe has been used on the Mars Exploration
Rover mission and the Phoenix Mars Lander mission,
and is now being baselined for use on the next Mars
Science Laboratory mission (fall of 2011). It has also
been adapted as preflight planning and a real-time anal-
ysis console tool that supports all phases of planning on
the International Space Station (ISS), as well as several
other flight projects and analogs.

User Interface Principles and Components
The SPIFe user interface is designed to be a highly adapt-
able and user-customizable framework for viewing and ma-
nipulating plan and schedule data. In order to achieve this,
SPIFe employs a composable, plug-in architecture based on
the open source Eclipse Rich Client Platform (RCP). Eclipse
provides a robust plug-in framework, and the RCP provides
many fundamental user interface components, such a tabbed
”workbench” that allows users to manipulate views and ed-
itors to display the information most relevant to the task at
hand. The following sections describe a number of SPIFe
views and editors that can be combined (or omitted) depend-
ing on the needs of a particular planning application.

The Timeline
One of the central components of the SPIFe framework, the
timeline (Figure 1) provides a traditional time-based repre-
sentation of a plan. Activities appear as bars that vary in

width according to when they’re scheduled. Timeline rows
are highly configurable: which rows are displayed, their or-
dering, bar figure look and feel, and row criteria (which de-
termine whether a given activity appears on a given row) can
all be modified in a descriptor file for a given application.

The goal of this extensive configurability is to provide an
appropriately detailed representation of a complex schedule
that is responsive to the needs of a particular user – suppress-
ing details that are not likely to be relevant or understood
and presenting others at a level of abstraction appropriate
for a user to make planning decisions on his or her own, or
easily understand the results of an automated planner. For
example, a typical Mars rover plan may include hundreds of
individual activities, each with copious metadata – param-
eters, notes, and results of resource estimates. A user may
choose to use a hierarchical grouping to associate activities
of similar scientific intent or using similar spacecraft hard-
ware, then work with these higher level activity groups on
the timeline when making planning decisions or presenting
the schedule to other stakeholders.

Figure 1: The SPIFe Timeline

All activities can be edited directly via drag-and-drop, and
the timeline also provides several feature such as multiple
selection, feedback during editing operations, and full sup-
port for multiple levels of Undo and Redo to allow users
to freely explore multiple solutions. The goal of the SPIFe
timeline is to capitalize on user familiarity with common
visual editing paradigms where possible (e.g. manipulating
figures in drawing tools like Visio or Powerpoint) in order to
remain approachable by non-experts.

Internal SPIFe constraint checkers as well as external sys-
tems can provide detailed temporal violations and have them



55

displayed within the context of the timeline. Additional in-
formation such as violation culprits can be identified visu-
ally via activity borders. Tooltips can be enabled to show a
configurable level of greater detail on violations or the activ-
ities themselves, as well as providing quick access to com-
mon fixes for temporal constraint violations or other sched-
ule defects.

The Table Editor
In addition to the timeline editor, SPIFe provides a tabu-
lar representation of the activities and groups in the plan.
The Table Editor (Figure 2) is useful for displaying a large
number of activities, and is especially useful for plans that
are sparsely populated (few events over long periods of
time) where a timeline display would be mostly empty for
a given time range. The Table Editor can be configured with
columns representing each piece of activity metadata, in-
cluding basic start time and duration information as well
as details of resource requirements or per-activity resource
consumption predicts.

Figure 2: The SPIFe Table Editor

The majority of observed planning processes involve
some form of plan integration. For example, the science
team on a Mars mission may be broken up into theme groups
around instruments or areas of scientific intent. Each team
may build partial plans in parallel, and then feed them back
in to an integrated plan for the spacecraft. In order to facili-
tate this merging process, users can open as many plan frag-
ments as needed and simply drag and drop or copy/paste
from one editor to another. For more sophisticated merge
operations that happen on a routine basis (such as integrat-
ing international partner inputs into a plan for the Interna-
tional Space Station), automated merge and integrate capa-
bility can be developed.

The Plan Advisor
One of the fundamental design principles of the SPIFe
toolkit is that the user’s hand should not be forced by any
integrated automated planning system. As a result, much of
the feedback from the native constraint and resource engine
as well as feedback from external systems is presented in a

view called the Plan Advisor (Figure 3). The concept behind
the Plan Advisor is that the human is in control of the plan,
but he or she may selectively invoke help from automated
systems.

Figure 3: The SPIFe Plan Advisor

In most cases feedback is presented to the user in realtime
after each plan edit. If a violation is determined to be fix-
able, either by native code or an external engine, users are
presented with a context menu containing common fixes. If
more extensive reasoning or search is required, users can
invoke the capabilities of external systems via ”Fix Viola-
tions” commands which are also invoked from the Advisor.

In many cases violations are deemed acceptable, either
due to a one-time exception, or more commonly an error or
omission with the model or constraints themselves. In these
cases, users can waive the violation and provide rationale.
These waivers and rationale are persisted with plan data so
an audit history is always preserved.

Resource Modeling
SPIFe has the capability to display resource usage effects
that are derived from the schedule and visualize resource
modeling information of varying kinds from coarse approxi-
mations to extremely high resolution simulation data. It also
supports a multitude of higher fidelity simulation engines
to display things like power, geometry (e.g. position of sun
relative to spacecraft), or data usage. The results of exter-
nal modeling tools are transferred seamlessly to the SPIFe
toolkit for display in the context of the planning session:
alongside the timeline, in columns in the table editor, in
fields in an inspector pane associated with each activity, and
in the Plan Advisor if necessary. This allow users to immedi-
ately see the effect of plan changes within the same context
and debug issues that potentially result from them.

External Toolkit Integration
The implementation of SPIFe was designed from the ground
up with integration of external planning and scheduling sys-
tems in mind. While some capabilities exist natively within
SPIFe, most domains that have been encountered utilize
high fidelity simulation and automated planning engines.
Robotic Mars and International Space Station missions alike
utilize agency and/or center wide standard modeling engines
that simulate geometric, electrical and thermal fluctuations
of the environment and physical hardware for presentation
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Figure 4: The SPIFe timeline displaying several predict plots
from a data model

to the planner. Planning engines have also been integrated
that allow external systems to propose modifications to the
currently editable plan. Such systems reconcile temporal and
resource constraints and can be as complex as requiring dis-
tributed system architecture, or as simple as scripts that re-
duce planning redundancies within the product.

The integration with such systems has been made possi-
ble through client side translation of internal SPIFe models
to external system models. These models are then commu-
nicated through RESTful interfaces, JNI, XML-RPC and/or
the spawning of new processes to evaluate the plan and
return simulated resource values and/or proposals for plan
modifications which can then be applied by the user while
maintaining the undo/redo functionality that allows users to
back out changes if necessary to correct overlooked con-
straints and or resource allocations.

Each deployment of SPIFe has always come with unique
challenges and thus unique engines and systems to integrate
with. For the Phoenix Mars Lander, SPIFe integrated with
the Europa planning engine to fix temporal violations, AP-
core which provided high-fidelity modeling of data acqui-
sition and transfer, and the JPL-developed Multi-Mission
Power Analysis Tool (MMPAT) for high-fidelity power
and thermal modeling. For the International Space Station
Power simulation product, SPIFe interfaces with numerous
tools, bringing together numerous different modeling and
simulation engines in a single, consistent user interface.
These include the Spacecraft Electrical Equipment Database
(SEED), Electrical Power Load Model (EPLM), the Battery
and Solar Array Model (BSAM), Flight Dynamic Planning
and Analysis (FDPA), Robotic Shadowing Calculator (RSC)
and Solar Array Constraint Engine (SACE).

Integration with all of these high fidelity engines not only
allow for the continued use of domain specific systems, but
allow SPIFe to leverage years of usability testing to make the
presentation of such capabilities intuitive, while not compro-
mising on the computational requirements to run a safe and
efficient mission.

Architectural Foundations
The modeling capability in SPIFe employs a widely utilized
modeling framework called the Eclipse Modeling Frame-
work (EMF). It is primarily an implementation of the Object
Management Group’s (OMG) Meta Object Facility (MOF).
This capability allows SPIFe to tap into an extensive li-
brary of support services that support the generation of meta-
models to describe domains using UML based tools, XML
schemas, database tables, by hand using Eclipse based tool-
ing, as well as a host of other techniques that continue to
evolve.

This standardization increases flexibility while reducing
the overhead that comes with use of planning and scheduling
tools. Many deployments start with a careful analysis of the
high level information planners wish to specify, and codify
them into models. Many times, these specifications already
exist in the form of database or XMl schemas, in which case
the use of the EMF/ MOF capabilities make integration with
existing systems trivial. If no such standards currently exist,
industry standard tools can be utilized to create such models
quickly.

Behavior of SPIFe planning models is specified through
the use of various modeling languages as defied by the auto-
mated systems that SPIFe utilizes. In many instances, the na-
tive SPIFe capabilities are used which leverages JavaScript
to take the metamodels and specify the effects, constraints
and conflict resolution strategies once added to the plan. The
use of JavaScript itself allows for the leveraging of a great
deal of shared development resources in terms of tooling and
documentation support.

In most cases however, the specific deployments of SPIFe
in domains use external engines that typically have their own
specific domain specific languages (DSL) to define the meta-
models. In such cases, the EMF / MOF capabilities are only
utilized to allow the UI to be configured for data entry and
visualization of the information. The data is thus sent and
returned to and from planning and scheduling engines asyn-
chronously, keeping both the automated and manual panner
in the loop at all times.

Concluding Remarks
Missions understandably set relatively high bars when it
comes to stability, control, efficiency, and transparency in
their operations processes. This may be especially true in
missions with tight tactical planning cycles. Here, plans
must be assembled quickly, and it must be widely under-
stood why a plan has been assembled the way it has before
a commitment is made to sequence it and execute it. The ad-
dition of automated planning technology then further accel-
erates the planning process. The focus on mixed initiative
planning, where plan flaws are noted and repair assistance
is provided, greatly contributes to transparency and control,
without which rapid planning in a tactical operations con-
text is far less useful. The ability to work with plans that are
invalid from the perspective of the planning model allows
users to incrementally build and repair a plan they under-
stand and can explain.

In addition, experience suggests there will always be nu-
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ances, exceptions or changes to how a mission chooses to
operate a spacecraft, and there isn’t time during the tacti-
cal cycle to bring the existing planner model into agreement
with the ground truth about the rover as understood by the
operators. Having close control over the modifications the
planning technology suggests for the plan is crucial in these
situations.
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Abstract

In this paper, we introduce a new approach to conformant
planning via classical planners. We view a conformant plan-
ning problem as a set of classical planning problems, called
sub-problems, and solve it using a generate-and-complete al-
gorithm. Key to this algorithm is a procedure which takes a
solution of a sub-problem and generates a solution for other
sub-problems. We implement this algorithm in a new planner,
called CPCL and evaluate it empirically against state-of-the-
art conformant planners using various benchmarks. The ex-
perimental results show that CPCL is superior to other plan-
ners in most benchmarks, both in performance and in scala-
bility.

Introduction
Conformant planning is the problem of computing a se-
quence of actions that achieves a goal in presence of in-
complete information about the initial state (Smith and Weld
1998). By definition, conformant planning searches for the
plan in the belief state space. Due to the incomplete infor-
mation, the belief state usually has large size which leads
to difficulty in searching for the solution. Thus one way
to address the problem is to translate the conformant plan-
ning problem to a classical planning problem which has been
done by t0 (Palacios and Geffner 2006).

The idea of using a classical planning system to solve a
non-classical planning problem has been applied to other
types of planning problems such as probabilistic planning.
FF-Replan (Yoon et al. 2007), the winner of the 2004 IPC,
which solves a probabilistic planning problem by (i) trans-
lating the problem into a classical planning problem, (ii)
computing a solution using a classical planner (FF), and (iii)
replanning whenever necessary.

It is interesting to contrast the approaches adopted in t0
and FF-Replan. While the translation employed by t0 could
produce a new problem whose size is exponential in the size
of the original one (if completeness is required), and thus
making the problem more difficult, the determinizing pro-
cess of FF-Replan simplifies the original problem by remov-
ing all information related to non-determinicity. This raises
the interesting question of whether an alternative approach
to t0, perhaps in a similar spirit to that of FF-Replan, could
produce similar results in conformant planning. It is clear
that the algorithm of FF-Replan cannot be applied to con-

formant planning, since conformant planning does not inter-
leave planning and execution.

In this paper, we develop a new approach to conformant
planning using classical planners. We implement the idea
in a system, called CPCL, and evaluate it against state-of-
the-art conformant planners using several benchmarks. The
experimental results show that the new planner performs ex-
ceptionally well in almost all domains and scales up better
than other planners.

Conformant Planning Problem
A conformant planning problem P is specified by a tuple
〈F,O, I,G〉, where F is a set of propositions, O a set of
action descriptions, I a set of formulae describing the initial
state of the world, and G a formula describing the goal.

A literal is a proposition p ∈ F or its negation ¬p. ¯̀

denotes the complement of the literal `, and it is defined as
¯̀ = ¬`, where ¬¬p = p for p ∈ F . For a set of literals L,
L = {¯̀ | ` ∈ L}; and L is often used to represent ∧`∈L`.

A set of literals X is consistent if there exists no p ∈
F such that {p,¬p} ⊆ X . A state s is a consistent and
complete set of literals, i.e., s is consistent, and for each
p ∈ F , either p ∈ s or ¬p ∈ s. A belief state is a set of
states. A set of literals X satisfies a literal ` (resp. a set of
literals Y ) iff ` ∈ X (resp. Y ⊆ X).

Each action a in O is associated with a precondition,
denoted by pre(a), and a set of conditional effects of the
form ψ → ` (denoted by a : ψ→`), where pre(a) and
ψ are sets of literals and ` is a literal. We often write
a : ψ → `1, . . . , `k as a shorthand for the set {a : ψ →
`1, . . . , a : ψ → `k}.

The initial state I is a collection of literals, one-of clauses
(each of the form one-of(ψ1, . . . , ψn)), and or clauses
(each of the form or(ψ1, . . . , ψm)) where each ψi is a set
of literals.

A set of literals X satisfies the one-of clause
one-of(ψ1, . . . , ψn) if there exists some i, 1 ≤ i ≤ n, such
that ψi ⊆ X and for every j 6= i, 1 ≤ j ≤ n, ψj∩X 6= ∅. X
satisfies the or clause or(ψ1, . . . , ψm) if there exists some
1 ≤ i ≤ m such that ψi ⊆ X .

By ext(I) we denote the set of all states satisfying every
literal in I , every one-of clause in I , and every or clause
in I (e.g., if F={g, f, h} and I={or(g, h), one-of(f, h)}
then ext(I) = {{g, h,¬f}, {g,¬h, f}, {¬g, h,¬f}}).
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The goal G is a collection of literals and or clauses.
Given a state s and an action a, a is executable in s if

pre(a) ⊆ s. A conditional effect a : ψ → l is applicable in
s if ψ ⊆ s. The set of effects of a in s, denoted by ea(s), is
defined as: ea(s) = {l | a : ψ → l ∈ O is applicable in s}.
The execution of a in a state s results in a successor state
succ(a, s), where succ(a, s) = (s ∪ ea(s)) \ ea(s) if a is
executable in s, and succ(a, s) = failed, otherwise. Us-
ing this function, we define ŝucc for computing the state
resulting from the execution of a sequence of actions α =
[a1, . . . , an]: ŝucc(α, s) = s if n = 0; and ŝucc(α, s) =
succ(an, ŝucc(β, s)) if n > 0 where β = [a1, . . . , an−1]

and ŝucc(γ, failed)
def
= failed for any sequence of ac-

tions γ. For a belief state S and action sequence α, let
ŝucc

∗
(α, S) = {ŝucc(α, s) | s ∈ S} if ŝucc(α, s) 6=

failed for every s ∈ S; and ŝucc∗(α, S) = failed, other-
wise. α is a solution of P iff ŝucc∗(α, ext(I)) 6= failed and
G is satisfied in every state belonging to ŝucc∗(α, ext(I)).

Conformant Planning using a Classical
Planner—An Intuition

In this section, we present our idea of how to use a classi-
cal planner to solve conformant planning problems. Let us
illustrate our idea in an example.

Example 1. Let us consider a small instance (denoted by
P1) of the coin problem from the IPC 2008 (Bryce and Buf-
fet 2008). In this problem, we have one elevator e0 which
can move between floors f0 and f1 if one of the actions
go up or go down is performed, depending on the loca-
tion of the elevator. Each floor has two positions p0 and p1.
An agent can enter (or exit) the elevator by using the action
step in (or step out). The agent can also move between po-
sitions on the same floor by using the actions move left and
move right. If the agent is at the same position as a coin, he
can collect the coin by using the action collect.

There is one coin, denoted by c0, whose initial location is
only partially known: the coin is on the floor f1 but it is not
known whether it is at the position p0 or p1. Furthermore,
the elevator’s location is initially unknown: it can be at f0 or
f1. Initially, the agent is at the position p0 of floor f0.

The goal is of the problem is to collect the coin c0—
denoted by the fluent have(c0).

Let us explore the encoding P1 = 〈F,O, I,G〉. In this
domain, the set of propositions F contains the following
propositions:1

• at(f, p): the agent is at position p of floor f ,
• in(e, f): the elevator is at the floor f ,
• coin at(c, f, p): the coin c is at position p of the floor f ,
• inside(e): the agent is inside the elevator e,
• have(c): the agent has the coin.

where f ∈ {f0, f1}, p ∈ {p0, p1}, e = e0, and c = c0. The
set of actions O with their conditional effects is given next:

1For simplicity, we omit the predicate shaft(e, p),
dec f(f, f ′) and dec p(p, p′) that denotes the spatial rela-
tion between elevators, positions and floors as they are static and
will be compiled away by the preprocessor of most planners.

go up(e, f0, f1) : in(e, f0)→ in(e, f1),¬in(e, f0)
go down(e, f1, f0) : in(e, f1)→ in(e, f0),¬in(e, f1)
step in(e, f, p) : in(e, f)→ inside(e),¬at(f, p)
step out(e, f, p) : in(e, f)→ at(f, p),¬inside(e)
move left(f, p1, p0) : true→ at(f, p0),¬at(f, p1)
move right(f, p0, p1) : true→ at(f, p1),¬at(f, p0)
collect(c0, f, p) : coin at(c0, f, p)→ have(c0),¬coin at(c0, f, p)

where f ∈ {f0, f1}, and p ∈ {p0, p1}. In addition,

pre(go up(e, f0, f1)) = {}
pre(go down(e, f1, f0)) = {}
pre(step in(e, f, p)) = {at(f, p)}
pre(step out(e, f, p)) = {inside(e)}
pre(move left(f, p, p′)) = {at(f, p)}
pre(move right(f, p, p′)) = {at(f, p)}
pre(collect(c0, f, p)) = {at(f, p)}

The initial state of the problem can be given by I = Id ∪ Io
where Id = {at(f0, p0)} and

Io = {one-of(coin at(c0, f1, p0), coin at(c0, f1, p1)),
one-of(in(e0, f0), in(e0, f1))}.

Finally, the goal of the problem is given by G =
{have(c0)}. Let

u0 = {at(f0, p0), coin at(c0, f1, p0), in(e0, f0)}
u1 = {at(f0, p0), coin at(c0, f1, p1), in(e0, f0)}
u2 = {at(f0, p0), coin at(c0, f1, p0), in(e0, f1)}
u3 = {at(f0, p0), coin at(c0, f1, p1), in(e0, f1)}

Define si = comp(ui). We have that ext(I) =
{s0, s1, s2, s3}. One of the solutions to this problem is:

α =

 go down(e0, f1, f0), step in(e0, f0, p0),
go up(e0, f0, f1), step out(e0, f1, p0),
collect(c0, f1, p0),move right(f1, p0, p1),
collect(c0, f1, p1)


2

Let us introduce the notion of sub-problem.
Definition 1. Let P = 〈F,O, I,G〉 be a conformant plan-
ning problem. For every s ∈ ext(I), the planning problem
P (s) = 〈F,O, s,G〉 is called a sub-problem of P .

Clearly, for every s ∈ ext(I), P (s) is a classical planning
problem. It is obvious that solution of P can be founded by
selecting (randomly) a sub-problem P (s) of P and repeat-
edly (i) computing a solution α of P (s); and (ii) testing if α
is a solution of P until a solution of P is found. Even though
this process is theoretically sound, such a brute-force com-
putation may not be practical for different reasons. First, the
set of solutions of P (s) is generally infinite and thus gen-
erating all solutions is impractical. Second, for efficiency
and space reasons, most state-of-the-art planners use heuris-
tics and remove some parts of the search space (non-optimal
planners avoid exploring the same state twice while opti-
mal planners ignore paths which violate some criteria, e.g.,
cost of current path is greater than an established threshold).
Third, the process ignores the relationships among the sub-
problems which are often useful in solving the problem. In-
spired by FF-Replan, we develop an algorithm for confor-
mant planning using a modification of the steps (i)-(ii).
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Although every solution α of P is a solution of P (s), it is
often the case that we can find a subsequence2 αs of α such
that αs is a solution of P (s). For example, for the problem
P1 in Example 1, the following sub-sequences αsi of α, are
solutions of P (si):

αs0 = [step in(e0, f0, p0), go up(e0, f0, f1),
step out(e0, f1, p0), collect(c0, f1, p0)]

αs1 = [step in(e0, f0, p0), go up(e0, f0, f1),
step out(e0, f1, p0),move right(f1, p0, p1),

collect(c0, f1, p1)]
αs2 = [go down(e0, f1, f0), step in(e0, f0, p0),

go up(e0, f0, f1), step out(e0, f1, p0),
collect(c0, f1, p0)]

αs3 = [go down(e0, f1, f0), step in(e0, f0, p0),
go up(e0, f0, f1), step out(e0, f1, p0),

move right(f1, p0, p1), collect(c0, f1, p1)]

Thus, one way of solving conformant problem is to mod-
ify a solution αs of a sub-problem P (s) of P—by adding
actions—so that it becomes a solution of P , as shown in the
next example.

Example 2. Let us consider the problem P1 from Exam-
ple 1. Let us assume that the classical planner selects
s0 from ext(I) and generates αs0 = [step in(e0, f0, p0),
go up(e0, f0, f1), step out(e0, f1, p0), collect(c0, f1, p0)]
as its first solution.
αs0 is not a solution of P1(s1). However, αs0 and αs1

share the first three actions and αs0 is executable in s1. Fur-
thermore, for s′1 = ŝucc(s1, αs0), we have that3 α01=αs0 ◦
β, where β = [move right(f1, p0, p1), collect(c0, f1, p1)],
is a solution of P1(s1).

Observe that α01 is also a solution of P1(s0). Thus, α01 is
a solution of the planning problem 〈P,O, {or(s0, s1)}, G〉.

Let us consider P1(s2). Checking to see whether
α01 is a solution of P1(s2) reveals that its first action,
step in(e0, f0, p0), is executable in s2; however, one of
the effects of this action, ¬at(f0, p0), is not contained
in succ(step in(e0, f0, p0), s2) because the precondition
in(e0, f0) of the conditional effect step in(e0, f0, p0) :
in(e0, f0) → ¬at(f0, p0) is not satisfied in s2. In order
to achieve this condition for step in(e0, f0, p0) from s2,
we should execute first the action go down(e0, f1, f0). Let
α012 = [go down(e0, f1, f0)]◦α01. We can verify that α012

is a solution of P1(s2). Moreover, we can also see that α012

is a solution of P1(s0), P1(s1), and P1(s3). In other words,
α012 is a solution of P1. Observe that α012 is identical to the
solution given in Example 1. 2

The above example shows that it is possible to use a clas-
sical planner and search in the original state space of a con-
formant planning problem for a solution by repeating the
following two steps until a solution is found:
• Compute a solution αs of a sub-problem P (s) of P , and
• Incrementally repair αs to meet the needs of other sub-

problems of P .

2We say that α is a subsequence of β is α is obtained by remov-
ing any number of elements from β.

3◦ denotes concatenation of two lists.

CPCL—A New Conformant Planner
We now describe a novel algorithm, called CPCL, which
solves a conformant planning problem by solving several
classical planning problems.

Algorithm
Alg. 1 shows the main search algorithm of the planner
CPCL. plan(X) plays the role of a classical planner that
returns a set of solutions of X . We assume that plan(X) re-
turns one solution at a time, nil if there is no more solution,
or failed if X does not have a solution. is solution(β, P )
checks whether or not β is a solution of the problem P .
Algorithm 1 CPCL(P)

1: Input: A planning problem P = 〈F,O, I,G〉
2: Output: A solution for P
3: Let Σ = [s0, . . . , sn] = ext(I) {Compute ext(I)}
4: αs0 = plan(P (s0)) {Get a solution of P (s0)}
5: if αs0 = failed then return failed
6: while αs0 6= nil do
7: if is solution(αs0 , P ) then return αs0
8: else β = completion(αs0 , P,Σ, 1)
9: if is solution(β, P ) then return β

10: αs0 = plan(P (s0))
11: end while
12: return unknown

completion(α, P,Σ, j) (0 ≤ j ≤ n) takes a problem P ,
whose initial belief state is [s0, . . . , sn], and a solution αsj−1

of P (sj−1) (where s−1 = sn), and attempts to create solu-
tions αsi for P (si), i = j + 1, . . . , n.

The procedure constructs a solution of the sub-problem
P (si) from the solution αsi−1

of P (si−1), by inserting ac-
tions into αsi−1

. To achieve this, the procedure starts with
the state si and an empty plan, considers each action a in
αsi−1

, and executes the following tasks:
• Task 1: inserts a sequence of actions before a, so that

(1) a is executable and (2) the execution of a maintains
some effects of a. If this fails then the algorithm stops
and declares that the original plan cannot be extended to
a plan for si.

• Task 2: makes sure that the final sequence of actions αsi
achieves the goal of P (si) and this may require adding
extra actions at the end of αsi .

Implementation and Evaluation
We develop CPCL using the source code of LAMA, the win-
ner of the deterministic track of IPC 2008 because of its ex-
ceptional performance and its object-oriented implementa-
tion which allows for an easy instantiation a new planning
module with different initial state and goal. In order to test
CPCL on the wide range of collected conformant planning
problems and achieve good performance, we have made the
following modifications to LAMA:
• The parser has been modified to consider various types of

actions that were rejected by LAMA;
• The parser has also been modified to enable the computa-

tion of the initial belief state of the planning problem;
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• Algorithms 1 have been integrated to LAMA. To generate
more than one solution of a problem, we disable the A∗
search feature of LAMA by keeping the open list (queue
of unexplored nodes) after the first solution is found and
continue the search for the next solution if needed.
We compare CPCL with other state-of-the-art planners—

i.e., CPA (Tran et al. 2009), DNF (To et al. 2009), and t0
(Palacios and Geffner 2009)—on problems from the liter-
ature and previous planning competitions. The experiment
have been performed on a Core 2 2.66GHz machine, with
4Gb memory, with a run-time cutoff of 30 minutes.

The benchmark set contains 731 instances of 18 domains
from the recent IPCs (2006 and 2008) and from the distri-
bution of CFF and t0. CPCL is able to solve 684 instances
while other planners can only solve up to 417 instances(333,
360 and 417 for CPA(H), t0 and DNF respectively).

Instance CPA(H) t0 DNF CPCL

blw-03 20.4/205 48.51/80 307/325 1.3/266
blw-04 AB AB AB 29.5/1384
coins-10 0.03/48 0.04/26 0.20/27 0.037/36
coins-30 AB AB AB 1.0/1107
comm-15 2.29//95 0.092/110 3.43/125 0.1/97
comm-25 1222/389 1.55/453 1797/501 0.8/294
sortnet-5 0.02/13 0.18/15 0.03/15 0.05/15
sortnet-15 240/74 AB 35/118 63.9/120
sortnum-5 AB 1.9/10 1.67/10 0.81/10
sortnum-20 AB AB AB 12.3/190
uts-30 4.9/74 0.79/67 1.39/73 0.17/64
uts-cycle-03 0.01/3 0.14/3 0.01/3 0.04/3
uts-cycle-15 AB AB AB 1314/272
raos-keys-02 0.26/32 0.02/21 0.09/39 0.05/38
raos-keys-04 AB AB AB 16.78/163
forest-03 AB 0.62/45 TO 0.46/167
forest-09 AB AB AB 183.8/963

Table 1: Results for IPC 2006/08 Domains (Time in seconds)

Domains from IPCs: Table 1 contains the results of our
experiments with domains from the IPCs 2006 and 2008—
in terms of the time and length of the first solution reported
by each planner. Boldface indicates the fastest planner. AB
denotes an execution aborted by the planner due to“out of
memory,” and TO denotes time-out. CPCL performs ex-
ceptionally well, both in term of efficiency and scalability.
CPCL consistently outperforms other planners in large in-
stances. For space reason, we omit the result on domains
from the distribution of CFF and t0.

Conclusion
In this paper, we proposed a novel approach to conformant
planning using classical planner. We implemented the new
algorithm using the source code of the classical planner
LAMA, and evaluated the new planner, CPCL, against state-
of-the-art conformant planners. CPCL outperforms other
planners in both performance and scalability, indicating that
the proposed approach is a strong alternative to current state-
of-the-art approaches.

It is well-known that the scalability and performance of
a conformant planner depend on two factors: the ability to
deal with the potential large size of the initial belief state and

the ability to guide the search. CPCL deals with these two
problems by taking advantage of the best from the research
in conformant and in classical planning.

CPCL copes with the huge size of the initial belief state
by considering each possible initial state separately, which
reduces the memory requirements—which is often the prob-
lem for other planners. This also allows CPCL to easily take
advantage of techniques that have been developed in con-
formant planning research for reducing the size of the ini-
tial belief state. By converting the problem to a classical
problem, CPCL can exploit the best heuristic classical plan-
ners in computing a solution. Furthermore, the generate-
and-complete algorithm allows CPCL to generate a solution
by solving multiple smaller problems.

We observe that, even though CPCL can solve a wide
range of benchmarks from various sources, which seem to
be difficult for other state-of-the-art conformant planners,
there are still domains in which CPCL does not work well.
Among them, the adder domain seems to be the most diffi-
cult one. This domain is special in that the size of the initial
belief state is very small, but the number of actions which
can be executed in a state is very large. Furthermore, the
conditional effects of the actions are much more complex
than those in other domains. We hypothesize that these two
factors make this domain difficult for conformant planners.
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Abstract

We present a software tool that is able to automatically
translate a given NP problem into a STRIPS problem such
that the former problem has a solution iff the latter has one, a
solution for the latter can be transformed into a solution for
the former, and all this can be done efficiently. Moreover,
the tool is built such that it only produces problems that
belong to a fragment of STRIPS that is solvable in non-
deterministic polynomial time, a fact that guarantees that the
whole approach is not an overkill (from the perspective of
complexity theory). This tool has interesting applications.
For example, with the advancement of planning technology,
it can be used as an off-the-shelf method to solve general
NP problems with the help of planners, to automatically
generate benchmark problems of known complexity in a
systematic and controlled manner, and to understand the
main deficiencies of the heuristics or search algorithms used
in planning. More interesting however is the relevance of
the approach for the area of Knowledge Engineering in
which one of the goals is to devise automatic methods for
obtaining planning problems from declarative descriptions of
real-world tasks, and for the field of Descriptive Complexity
Theory on which the approach rests.

(The full paper on this system appear in the ICAPS-11 Pro-
ceedings at pages 178-185)
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Abstract
When planning techniques are used for narrative gener-
ation in new media applications different criteria, based
on such things as plan dynamics, are required to assess
plan quality. In our work we have looked at providing
support for specifying this information: we introduced
a meta-level of representation that is an abstraction of
the domain with respect to time and causality which we
have represented visually via a narrative arc. We have
used this visual representation in a visual programming
approach to the exploration and specification of plan dy-
namics. In this demo we showcase this approach using
our system that features virtual characters inspired by
Shakespeare’s play The Merchant of Venice1.

Introduction
Interactive Storytelling (IS) represents a major new appli-
cation area for AI planning. New media domains such as
IS differ markedly from the benchmark domains that have
featured in AI research. One key difference is that the crite-
ria used to assess plan quality are no longer concerned with
such things as optimality, rather the focus is the dynamics of
the plan, in terms of the shape of its trajectory and the inter-
mediate states that will be traversed when it is executed.

In earlier work we developed a plan-based approach to
narrative generation that exploits a meta-level of representa-
tion via the use of constrained predicates, referred to as con-
straints, representing key narrative situations for the domain
of interest (Porteous, Cavazza, and Charles 2010). These
constraints are used as intermediate goals to guide genera-
tion of narratives featuring these situations. Hence they pro-
vide a way to specify the abstract shape of a narrative trajec-
tory in terms of the intermediate states that it will traverse
when it is visualised. This abstract meta-level of represen-
tation formed the basis for our solution to the problem of
specifying plan dynamics: we developed a visual represen-
tation in the shape of a narrative arc which facilitated a visual
programming approach to specification of plan dynamics.

In the demo we showcase our approach to specifying plan
dynamics with reference to an IS system we have developed
based on Shakespeares’ Merchant of Venice. The demo is a
companion to our ICAPS paper (Porteous et al. 2011).

1The full paper describing this system appears in the ICAPS-11
Proceedings at pages 186-193

Figure 1: System Architecture Overview. User Interaction is
at the meta-level via visual programming (a), visualisation
(b) and timeline (c) and not with lower level components.

Demo: System Architecture
Our visual interface for specification of plan dynamics is
fully implemented and integrated with our IS system. An
overview of the system architecture is shown in figure 1. The
user interacts at the meta-level via a Narrative Arc Window
(a) and can also explore generated narratives via two visu-
alisation windows: an Animation Window (b); and a Time-
line Window (c). The system also features some hierarchi-
cally organised lower level components. They include the
constraints (d) and other PDDL constituents of the domain
model (e). The planner is invoked by the user (f) to explore
the narrative possibilities of different plan dynamics.
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Figure 2: An overview of visual programming of plan dynamics. Screenshots A1, A2 and A3 show an interactive process where
an initial user drawn narrative arc (A1) is modified by dragging different sections of the arc (A2) and where the system arc and
position of constraints has been automatically adjusted to reflect the user changes (A3). N1 and N2 are representations of the
narratives that have been generated in response to user invocation of the planner using the arcs in A1 and A3 respectively.
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Demo: Sample User Session
The aim of the demo is to show how user specification of
different shaped narrative arcs results in the generation of
different narratives. In the demo we will also show these
generated narratives visualised in a 3D world and demon-
strate tools which support user evaluation of them. Here we
illustrate highlights of this process via an example scenario.

A user will typically start by interacting with the visual
programming system via the Narrative Arc Window. This
enables them to draw and manipulate differently shaped nar-
rative arcs. At any point the user can use this narrative arc
to drive narrative generation and to explore the visualisa-
tion of this narrative in a 3D world. For the user this means
that once a narrative arc has been created they can choose
to invoke the narrative generator and the system will begin
visualisation of the narrative in a visualisation window. Fig-
ure 2 gives an illustration of some important aspects of this
process of user interaction with the system.

For instance, figure 2 includes a series of screen shots that
show user interaction via the narrative arc (A1, A2 and A3).
They show the constituent elements of the window that are
presented to the user: the x-axis is the duration of the narra-
tive; the y-axis is the level of narrative tension; and the la-
belled circles along the x-axis represent narrative constraints
(when the user runs the mouse over one of the circles then
the constraint name is displayed). Screenshot A1 shows a
user drawn desired narrative arc along with an arc that has
been generated by the system which is its best fit to the users
arc (further detail of this matching process can be found in
(Porteous et al. 2011)). Screenshot A2 shows the user in the
process of manipulating their desired arc in order to spec-
ify different plan dynamics: the user is modifying the arc
by dragging different segments of it. In response to the user
modifications the system recalculates the best fit and redis-
plays the constraints and system arc, which results in the
situation shown in screenshot A3. For the constraints along
the x-axis, observe how both the relative spacing between
them and the ordering of the constraints has changed. In
particular, constraint B has moved from its position between
constraints M and N, to between A and C.

Once a user has specified the shape of their desired nar-
rative arc, they can then choose to generate a narrative that
displays those global properties. As an illustration the nar-
ratives that have been generated using the arcs in screenshot
A1 and A3 are represented in narratives N1 and N2 respec-
tively. The shapes of the arcs in A1 and A3 are very differ-
ent: for instance, the arc A1 follows an Aristotelian contour,
with minor climaxes of increasing tension levels before the
final climax of the play and subsequent denouement. This
climax is the end of the “pound-of-flesh” sub-plot (Hinely
1980), where it appears all hope is lost for the titular mer-
chant of the play, Antonio, having defaulted on a loan from
Shylock, who is unwilling to show mercy and finally begs

the court to deliver its judgement represented in our domain
with constraint L (called-for-judgement antonio duke court-
room). Segments of the narrative generated from the arc A1,
along with shots from its 3D visualisation, are shown in nar-
rative N1. The constraints labelled M and B are interesting
in this narrative because they show Antonio revealing his
true feelings of contempt for Shylock only after Shylock has
continued to demand his pound-of-flesh and failed to show
mercy on Antonio. One consequence of these actions is that
some justification is given for Antonio’s demonstration of
contempt for Shylock.

In contrast, arc A3 in figure 2 has a different shape with
early and late climaxes with minor crises through the middle
section. This user arc has resulted in a different arrangement
of constraints and system arc (to that discussed already for
arc A1) and the semantics of the resulting narrative (shown
in N2) are very different since the constraint that relates to
Antonio’s bad treatment of Shylock, constraint B, now ap-
pears at the start of the narrative. This illustrates how differ-
ent narrative arcs and the plan dynamics they specify can re-
veal different semantics. For the generated narrative N2, the
semantics are very different to those of narrative N1 since
Antonio’s merciless treatment of Shylock early on has no
justification and any later suffering by Antonio can be seen
as deserved.

Our system also features a timeline window, as shown in
the system architecture figure on page 3. In this window the
segment of the narrative that is currently being visualised
is displayed to the user. As the planner proceeds the time-
line is updated in real-time. Users can use the timeline for
narrative navigation, for example, to rewind and restart the
visualisation from a different point in the narrative.
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Abstract 

Modern electronic calendars offer a variety of 
functionalities to help a user organize her activities—her 
tasks and events. However, rarely do these tools support 
automated scheduling and rescheduling of a user's activities. 
This demo paper presents SELFPLANNER 2.0, the latest 
version of a web-based calendar prototype that helps a user 
to organize her activities by coupling a rich activity model 
with a scheduling engine. Activities are considered as 
having temporal domains, utilities, variable durations, and 
alternative locations; they may be interruptible or periodic; 
and they may be concurrent. The user is able to express 
constraints and preferences over the way individual 
activities or pairs of activities are scheduled. The underlying 
scheduler seeks to maximize the overall schedule utility 
using a greedy approach. SELFPLANNER employs Google 
Calendar for presentation and Google Maps to compute 
travelling times for temporally adjacent activities scheduled 
in distant locations.  

Introduction 

Paper calendars have, for more and more people, given 

way to electronic calendaring tools. Web-based calendar 

applications, such as Google Calendar, Yahoo! Calendar, 

or 30 Boxes, allow the user to connect from a variety of 

devices without the need for synchronization. They offer 

intuitive functionality, such as reminders, multiple 

overlapping calendars, manual meeting arrangement, 

calendar sharing and publishing, to-do task lists, and so 

forth. Similar functionalities are provided by client-side 

calendar applications such as Apple‟s iCal and Microsoft‟s 

Outlook. 

 Whether web-based or client-based, no popular 

calendaring applications provide the means for effective 

automated activity scheduling. By automated scheduling 

we refer to the use of a scheduler that decides where to put 

an activity—an event or a task—within a user‟s calendar, 

subject to the user‟s approval. In order for a scheduler to 

decide when to place an activity, a rich formulation of the 

scheduling problem is necessary: otherwise the proposed 

schedule would be rejected by the user as unrealistic. This 

problem formulation should specify, for each activity: the 

allowed time intervals (that is, its temporal domain), its 

duration and whether the duration is fixed or variable, 

whether the activity is interruptible or not, whether it is 

periodic or not, where should the user be in order to 

accomplish it (e.g., the location of the appointment), and 

how much time is needed in order for the user to move 

from one location to another. Further, the formulation 

should reflect the user‟s preferences, that is the utility 

gained when an activity is accomplished, as well as 

additional utility gained by the way an activity is scheduled 

within its domain (for example, earlier in the day may be 

preferred to later in the day), and any utility gained by the 

way pairs of activities are scheduled in relation to each 

other. 

 In this demo paper we present SELFPLANNER, a web-

based prototype calendar application that couples such a 

rich activity model with a scheduling engine. Online since 

2008, SELFPLANNER has several dozen real users. An 

earlier version of the system, circa 2008, was evaluated by 

its users with very promising results (Refanidis and 

Alexiadis, 2011). The latest version of the system, version 

2.0, illustrated in this paper, implements a significantly 

expanded model (Refanidis and Yorke-Smith, 2010). 

SELFPLANNER uses Google Calendar for presentation 

purposes and Google Maps to compute travelling times. 

The system is not designed to support automated meeting 

arrangement; the user can use the manual meeting 

arrangement tools provided by Google Calendar, with the 

time of the meeting being considered as busy time by 

SELFPLANNER when scheduling the rest of the activities. 

The system is accessible through http://selfplanner.uom.gr.  

 This demo paper illustrates the complexity that an 

intelligent calendar assistant must address, through a set of 

motivating examples.  We then present the key features of 

the system, and conclude by anticipating future 

developments in intelligent calendar applications. 

http://selfplanner.uom.gr/
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Motivating Examples 

The vision behind SELFPLANNER is to consider both events 

and tasks when providing automated scheduling assistance 

to support the user‟s time management.  Traditionally, 

events such as a doctor‟s appointment are placed in a 

user‟s calendar, with a specific time (and potentially 

location) reference, whereas tasks sit in a to-do list, being 

characterized perhaps by a deadline.  Treating events and 

tasks differently, with only events having their place into a 

user‟s calendar, can result in tasks missing their deadlines. 

Apple iCal and Microsoft Outlook allow the user to drop a 

task from the to-do list into the calendar, thus allocating 

manually some time slots to the task.  Google‟s 

applications weakly integrate tasks, events, and email; a 

strong integration is adopted by the open source Chandler 

Project.  With SELFPLANNER, any activity that requires 

some of the user‟s time has its place in her calendar. In the 

following paragraphs we give some motivating examples. 

 The simplest case of an activity is one that has a 

designated schedule. For example, attending a lecture. The 

user has only to decide whether or not to attend the lecture.  

If she decides to attend, there is no option to negotiate the 

time when or the location where the lecture will take place. 

By contrast, activities such as buying food are more 

flexible: the user can decide between alternative schedules. 

Consequently, providing automated assistance in 

scheduling such activities relies on a wealth of information 

(Krzywicki et. al., 2010), such as: 

• A duration estimate (how long?) 

• The timetable of the shops (when are they open?) 

• The alternative shops which are compatible with the 

shopping list (which shops sell food?) 

 Going shopping can also be considered a periodic 

activity, i.e., one that is repeated, say once a week. While 

periodic activities do not have to be scheduled in the same 

time and location within each period, they should be 

scheduled once within each period, whenever possible. For 

example, going shopping may take place either on Friday 

or on Saturday, either in the morning or in the evening, 

depending on the rest of the activities in the user‟s calendar 

within each week. The location for each instance of a 

periodic activity can also be selected based on the locations 

of other activities that are scheduled adjacently in time, 

with the aim to minimize travelling time. 

 Some activities, such as reading a book, are not usually 

performed all at once: we call these activities interruptible. 

The user might estimate an overall duration for this 

activity, e.g., 30 hours, and the activity will be divided into 

parts that will be scheduled separately. These parts do not 

have to share the same duration or location, but their sum 

should equal the overall duration specified for the activity. 

The user might specify compatible locations where she 

should be in order to execute the activity and, potentially, a 

temporal domain. Note that periodicity and interruptibility 

are orthogonal properties: an activity can be periodic or 

interruptible, or both. 

 Activities may serve as placeholders or reminders 

(Palen, 1995). It is a common situation to have overlapping 

activities in a user‟s calendar. For example, one might 

define a three-day activity concerning attending ICAPS 

2012 in Brazil and several other more specific activities 

concerning attending specific sessions of the conference.  

 Busy users often have an overloaded schedule, such that 

all of their activities cannot fit within their calendars or 

they cannot all be scheduled in an ideal way. Some 

decisions have to be taken concerning which activities to 

schedule and how. Each activity included in the user‟s 

calendar presumably yields some utility to the user, which 

depends on the activity. For instance, doing business may 

be considered more important by some than spending time 

for leisure activities. However, whether or not an activity is 

included in a user‟s calendar is not the only source of 

utility. Utility may also result from the way an activity is 

scheduled, both on its own as well as in conjunction with 

the rest of them. Hence, it might be preferable to decide 

not to schedule an activity at all, in order to get a better 

schedule for the rest of them.  

 As an illustration, consider sleeping as a typical example 

of an activity for which alternative schedules result in 

different degrees of user‟s satisfaction. The user might 

prefer to „execute‟ this activity at once within each day 

than executing it in parts. Usually the user prefers to 

schedule this activity during the night than during the day. 

She also might prefer to schedule this activity at home than 

at her office! Finally, sleeping has a variable duration, in 

the sense that the user can decide how long to sleep (we do 

not consider stochastic activities, where duration is a 

random variable). For example, one might want to sleep 

between 6 and 8 hours daily, with 8 hours resulting in more 

utility than 6 hours. 

 Further, utility may also result from the way sets of 

activities are scheduled in relation to each other. Consider 

writing a paper and doing housekeeping. Writing the paper 

is a heavy mental task that is optimized when one has clear 

head and is concentrated on it. One might prefer to work 

on writing the paper before doing housekeeping or, 

alternatively, to leave some minimum temporal distance 

between the two activities. However, in case it is not 

possible to schedule these activities in the optimum way, 

the user is willing to accept any schedule that includes 

these activities, provided she completes both, even if the 

schedule violates some of her ideal preferences. 

 Finally, and not least, constraints can hold between 

activities. For example, consider a pair of activities 

concerning going to Crete on holiday by plane, and the 

return journey. Obviously, going to Crete should precede 

the return flight (an ordering constraint), whereas we could 
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ask for a minimum and maximum duration for the whole 

journey (a temporal proximity constraint between these 

two activities). Other activities to be executed during the 

vacation should be scheduled between the two flights.  

Implication constraints might also hold between these 

activities, imposing for example that there is no reason to 

schedule one of the two flights—or any other of the 

activities that are related with the vacation—without 

scheduling the other.  

 Scheduling a user‟s activities is a continuous process. 

New activities might arrive at any time, causing already 

scheduled activities to be rescheduled or even abandoned 

in order to accommodate the new ones within the user‟s 

calendar.  The need for rescheduling is critical for any 

intelligent calendar application. In order to minimize the 

user‟s disturbance, rescheduling should give less 

preference in changing the user‟s short-term schedule. 

The System 

SELFPLANNER 2.0 supports all the modelling aspects one 

needs in order to represent the situations described with the 

motivating examples, and many more. Activities are 

characterized by a utility value, a duration range (with 

greater duration resulting in greater utility), a temporal 

domain, a preference function over the various time slots 

of the temporal domain, a set of alternative locations, and a 

utilization parameter, concerning the percentage of a user‟s 

attention required when the activity is executed, with the 

constraint that the sum of the utilizations of all concurrent 

activities does not exceed 100%. In order for a set of 

activities to be scheduled concurrently, they need to have 

the same (or compatible) locations. Temporal preference 

functions supported are linear descending (the earliest the 

better), linear ascending (the latest the better), stepwise 

descending (before some specified time point), and 

stepwise ascending (after some specified time point).  The 

user is free to specify as little or as much of the 

information for an activity as she likes. 

 For interruptible activities the user can specify the 

minimum and maximum allowable duration for their parts. 

Further, the user can specify extra constraints—either 

mandatory hard constraints or flexible soft constraints—

concerning the minimum and the maximum temporal 

distance between pairs of parts of the interruptible activity.  

Soft constraints, if satisfied, result in extra utility; partial 

satisfaction is supported.  Four types of binary hard and 

soft constraints are supported: Ordering constraints, 

minimum distance constraints, maximum distance 

constraints, and implication constraints.  An activity can 

also be periodic, with each instance of the activity being 

treated as a separate activity by the scheduler. Daily, 

weekly and monthly periodic activities are supported. 

 The scheduling problem that results can be framed as a 

constraint optimization problem.  SELFPLANNER uses a 

greedy heuristic scheduling engine, based on the Squeaky 

Wheel Optimization framework, boosted with domain-

dependent heuristics, to solve the underlying constraint 

optimization problem. Experimental results have shown 

that even problems with dozens of fully featured activities 

can be solved near optimally in a few seconds (Refanidis 

and Yorke-Smith, 2010; Refanidis, 2007). 

 The system‟s architecture is shown in Figure 1. On the 

server side, the SELFPLANNER application implements the 

system‟s logic; a scheduling engine generates plans for the 

user‟s activities; and a database retains users‟ data, 

including their activity lists and current plans.  The user 

interface consists of a Java applet running on the client 

side. The user interacts also with Google Calendar, in order 

to watch her plan, which is updated by the main 

SELFPLANNER application.  The user can also add new 

events directly into her Google Calendar, e.g., meetings 

with other people; these events are considered busy time 

by the system when scheduling her activities.  Finally, the 

SELFPLANNER application interacts with the Google Maps 

Server, in order to compute travelling times between the 

locations of the activities. 

 Special attention is given to the user interface. While 

many parameters may be specified for each activity, most 

of them usually have default values. The most important 

features of the system (Figure 2) are the following: 

• Users indicated that the most time-consuming task 

concerns the definition of a temporal domain. 

SELFPLANNER implements an innovative way to define 

temporal domains, which consists of a combination of 

template application and manual editing. A template is 

a user defined pattern of time slot inclusion/exclusion 

covering a day, a week, or a month. A template can be 

applied over the entire temporal domain of an activity, 

or over a part of it, to include or exclude specific time 

 

SELFPLANNER GUI Google Calendar 

SELFPLANNER Application 

User Data 
 Activity List 
 Current Plan 

Scheduler Google Maps 
Server 

 

Figure 1. SELFPLANNER architecture. 
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slots. Sequences of templates can also be applied. 

Finally, the user can edit the temporal domain 

manually. Using templates, the user can define large 

temporal domains with a few clicks.  

• Daylight savings time is taken into account when 

scheduling, whereas when displaying the resulting plan, 

the system takes into account the user‟s timezone. 

Multiple calendars are supported. 

• User defined classes of locations, e.g., malls, are also 

supported, giving the user the option to assign to an 

activity large sets of locations with a single choice.  

• Specific instances of a periodic activity can be excluded 

from a user‟s calendar easily, without the need to resort 

to the calendar. 

• Each time the user logs into the system, she is offered 

the opportunity to give feedback concerning the status 

of any activity that should have been accomplished 

between her last logout and the current time. Hence, the 

system knows which already scheduled activities were 

not accomplished and reschedules them. 

• The user is able to specify her current location (with the 

default current location being the location of the last 

accomplished activity). Hence, there is always enough 

time to travel to the location of the next activity.  

• Activities directly entered into the user‟s Google 

Calendar are considered as busy time, so no other 

activity is scheduled in the same time period. However, 

these activities are not annotated with a location, so 

travelling time cannot be computed. 

• Since many activities are inflexible, there is an option 

for rapidly inserting a new non-interruptible activity 

with specific start time and location. This is equivalent 

with directly entering the activity into the user‟s 

Google Calendar, however doing it through 

SELFPLANNER allows to specify the activity‟s location. 

Conclusions and Future Work 

SELFPLANNER is a continuously evolving prototype 

application aimed at reducing the effort in the management 

of a user‟s electronic calendar. Currently it implements a 

rich activity model with simple, interruptible and periodic 

activities, locations, concurrency, and several unary and 

binary hard and soft constraints, coupled with a powerful 

best-effort heuristic scheduling engine. An evaluation of an 

earlier version of the system, since 2008, with real users, 

 

Figure 2. An overview of the SELFPLANNER system. The main application window (lower right) contains the current list of activities. In 
the upper right corner is the Edit Task dialog box, shown editing the temporal domain of the Lunch at UoM activity.  It is interesting to 
have a look at how this activity has been scheduled.  It is a daily periodic activity with a duration that may be either 30 mins or 1 hour 

(preferred).  The restaurant is open from 12:00 to 14:00 daily, and the user prefers to eat as late as possible, i.e., close to 14:00, more 
strongly than she prefers to have 1 hour for lunch.  Seen on the left is the interface for designating relevant locations.  Behind the other 

windows is the Google Calendar interface in which the whole schedule is shown. 
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demonstrated its strengths over traditional electronic 

calendars as well its potential for broader user adoption 

(Refanidis and Alexiadis, 2011). 

 Currently, SELFPLANNER is being evolved through its 

integration in an information system supporting the visitor 

of an area to enhance his visit with cultural activities. The 

integrated system, called MYVISITPLANNER, will retain 

information about cultural activities offered in the area of 

northern Greece (particularly Macedonia and Thrace), 

including metadata such as location, working hours, 

estimated visit duration etc. Coupling this information with 

the user‟s calendar and profile, the system will be able to 

suggest activities to the user and, once accepted, schedule 

them in his calendar, while taking into account constraints 

imposed both by the new as well as the existing activities. 

 SELFPLANNER is a step towards creation of general 

purpose intelligent user assistants. Such assistant agents 

aim to helping the user to organize and accomplish her 

tasks (Maes, 1994; Freed et. al. 2008). One aspect of their 

duties is to help organize the user‟s time, i.e., advising 

what to do and when, or supporting calendar management 

and meeting coordination (Berry et. al. 2011). However, 

there are other ways in which SELFPLANNER could be 

extended in order to provide true intelligent assistance in 

organizing a user‟s activities. For example: 

• Coordination with other users: Currently SELFPLANNER 

organizes only the activities of a single user, with 

meetings with other users being considered as busy 

time. Assuming that several users are using a system 

with scheduling capabilities, arranging meetings could 

involve rescheduling of already scheduled activities for 

all users (Berry et al. 2011).  

• Planning problem: The current activity model could be 

enhanced with allowing the activities having 

preconditions and effects. Consequently, the scheduling 

engine should be replaced by a planning engine, able to 

add activities into the user‟s calendar in order to 

support the open goals. 

• Parameter learning: Instead of information about 

activities being entered by the user, machine learning 

can be exploited to more intelligent pre-populate fields 

based on previous activities (Krzywicki et. al. 2010).  

While the knowledge entry and management has not 

been a focus of our research, we are aware it is 

significant for real-life adoption of intelligent agents. 

• Information extraction: An intelligent agent should be 

aware of its user‟s profile and exploit this knowledge in 

order to extract information, such as from the internet, 

concerning activities that might be of interest for its 

user, e.g., attending ICAPS 2012 (Oh et. al., 2010). 

• Web service invocation: Finally, a real intelligent agent 

should be able to accomplish some activities 

automatically, be invoking suitable web services if 

available (Freed et. al. 2008). For example, for an 

already scheduled activity concerning travelling to 

Brazil to attend ICAPS 2012, booking the plane tickets 

and the hotel, or getting information for the weather 

conditions, might save a lot of the user‟s time. 
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Abstract
One of the most important applications of planning tech-
nology is guiding robotic agents in an autonomous fashion
through complex problem scenarios. Increasingly, real-world
scenarios are evolving in ways that require intensive interac-
tion between human actors and the robotic agent, mediated
by a planning system. We propose to demonstrate an inte-
grated system in one such problem that falls under the aegis
of an urban search and rescue (USAR) scenario. We show a
simulation of a run through one such problem where a mobile
robot is given certain goals to achieve in a layout of interest,
and discuss how the various capabilities of the planner are
instrumental in achieving the agent’s goals.

Introduction
One of the earliest motivations of Artificial Intelligence was
to provide autonomous control to robotic agents that carry
out useful service tasks. Application scenarios for these
kinds of tasks span a wide spectrum that includes military
drones and mules, household assistance agents and search
and rescue robots. The level of autonomy desired of such
robotic agents can be achieved only by integrating them with
planning systems that can plan not only for the initial goals,
but also updates to these goals and the state of the world.

Recent years have seen the emergence of fast planning
algorithms and systems that can be used to model a large
number of the features that distinguish real world applica-
tions from theoretical problem scenarios. Key among these
features are time, cost, resources, uncertainty and execution
failure. Though a few planners have modeled a subset of
these features in the past, the scale-up required to support
real world timeframes has only come about recently due to
the extensive use of heuristic search methods for plan syn-
thesis. Current planners still impose a number of restrictive
assumptions in order to support this scale-up; classical plan-
ners are the best example of this. The challenge is to identify
the essential features when considering planning support for
such real-world scenarios.

In this demonstration, we show one such planning sys-
tem aiding a robotic agent as it navigates a search and report
scenario. We describe the environment that the robot is exe-
cuting in, as well as its goals and actions, in detail. We then
provide a brief overview of the planning system that is inte-
grated with the architecture controlling the robot, and detail

some extensions that we had to provide in order to enable
successful modeling of the application scenario.

Scenario: Search and Rescue
One of the primary applications of robotic agents is in sce-
narios where a human actor has a plethora of knowledge
about the problem at hand, yet cannot act in the world due
to inherent dangers to human life – emergency response and
firefighting are among the best examples of such scenarios.
In such cases, having a robotic agent as part of the team
greatly increases the chances of achieving the desired end-
goals (rescuing people, putting out a fire etc.) without ex-
posing the human team-member to risks.

In this demonstration, we consider a specific scenario that
we had to provide planning support for to illustrate the chal-
lenges that crop up when planning for robots in real-world
scenarios. This is the urban search and rescue (USAR) sce-
nario – a team consisting of a human and an autonomous
robot is tasked with finding and reporting the location of crit-
ical assets (e.g. injured humans) in an urban setting (usually
a building). A given USAR task may consist of multiple
problems, each with different challenges. The human mem-
ber of the team usually has intimate knowledge of the set-
ting of the scenario, but cannot perform the required tasks
due to inherent dangers like fires, gas leaks, collapsed struc-
tures etc. The robot is considered autonomous because the
human only communicates with it sparingly, to specify the
goals that it must achieve and any information that might
be deemed useful for its execution in the world. Examples
of tasks in the USAR scenario include transporting essen-
tial materials to a specified location or entity; and reconnais-
sance tasks like reporting the locations of trapped or injured
humans to the commander and taking pictures of objects or
areas of interest. In the following, we present the specific
USAR task that we tested our system on in order to illus-
trate the inherent planning challenges.

Task: Search and Report
In this problem, the robot’s main goal is to deliver essen-
tial medical supplies to a specific location within the area
of interest – during its run, the robot may be given addi-
tional information and goals about other assets. The human
team-member (the commander) has intimate knowledge of
the building’s layout, but is removed from the scene and
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can only interact with the robot via on-board wireless com-
munication. The robot begins in a long hallway that has
doors leading off into rooms on either side. Initially, the
robot is unaware that that these rooms may contain injured
or trapped humans, and its goal is to reach the end of the
hallway to deliver the supplies by a given deadline.

As the robot executes a plan to achieve that goal, the hu-
man commander notes that it is passing the rooms and re-
calls that injured humans may be trapped in these rooms.
The commander then passes on this information linking
rooms to injured humans to the robot, and specifies a new
goal on reporting the location of as many such humans as
possible given the time and resource constraints imposed by
the achievement of its original goal. In addition, the hu-
man commander remembers that rooms have doors, and that
these doors must be pushed open in order for the robot to
gain access to the room behind that door. The robotic agent
(and hence the planner) already has a “push” action encoded
as part of its domain theory - this action must be updated
in order to reflect the new information from the commander.
This requires a change to the world model that the planner is
using - the system must process information that is received
via natural language (from the commander) and relay it to
the system, where update methods are used in order to mod-
ify the model.

We demonstrate a run of the robotic agent through the
above scenario, while it is supported by the planner. Full
details of this demonstration can be found in the attached
document that details a storyboard.

Planning System
The planner that we use – SapaReplan – is an extension of
the metric-temporal planner Sapa (Do and Kambhampati
2002) that handles partial satisfaction planning (Benton,
Do, and Kambhampati 2009) and replanning (Cushing,
Benton, and Kambhampati 2008). Specifically, the planning
problem is defined in terms of the initial state, and the set of
goals that need to be satisfied. Actions have known (real-
valued) costs. Each goal can have a reward and a penalty
∈ [0,∞]. The reward is accrued when the goal is satisfied in
the final state, while the penalty is incurred for not satisfying
it. The costs, rewards and penalties are all assumed to be in
the same units. The net benefit of a solution plan is defined
as the sum of rewards of the goals it achieves, minus the
sum of penalties of the goals it fails to achieve, and minus
the sum of costs of the actions used in the plan. The use of
a reward / penalty model allows our planner to model both
opportunities and commitments/constraints in a uniform
fashion. A goal with zero penalty is a pure opportunity,
while one with zero reward is a pure commitment. A ”hard”
goal has finite reward but infinite penalty (and thus must be
achieved by any plan).

The planner consists of three coupled, but distinct parts:

• Search. SapaReplan performs a weighted A*, forward
search using net benefit as the optimization criterion.

• Heuristic. The heuristic used to guide the planner’s search
is based on well-known relaxed planning graph heuris-

tics where, during search, relaxed solutions are found in
polynomial time per state. Sapa uses a temporal relaxed
planning graph that accounts for the durations of actions
when calculating costs and finding relaxed solutions. In
the partial satisfaction planning extensions, the heuristic
also performs online goal selection. In essence, it solves
for all goals (hard and soft) in the relaxed problem and
gives a cost for reaching each of them (∞ for unreachable
goals). If the cost of reaching a soft goal is greater than
its reward, it removes that goal from the heuristic calcula-
tion. If the cost of reaching a hard goal is infinity, it marks
a state as a dead end. Finally, the difference between the
total reward and total cost of the remaining goals is calcu-
lated and used as the heuristic value.

• Monitoring / Replanning. The extensions for replanning
require the use of an execution monitor, which takes up-
dates from the human-robot team architecture (in this
case). Upon receiving an update, the planner updates its
knowledge of the “current state” and replans. Replanning
itself is posed as a new partial satisfaction planning prob-
lem, where the initial and goal states capture the status
and commitments of the current plan (Cushing, Benton,
and Kambhampati 2008).

Problem Updates New sensory information, goals, or facts
given by a human commander can be sent to the planner
at any time, either during planning or after a plan has been
output. Regardless of the originating source, the monitor
listens for updates from a single source from the architecture
and correspondingly modifies the planner’s representation of
the problem. Updates can include new objects, timed events
(i.e., an addition or deletion of a fact at a particular time, or a
change in a numeric value such as action cost), the addition
or modification (on the deadline or reward) of a goal, and a
time point to plan from. An example update is given below:
(:update
:objects

red3 - zone
:events

(at 125.0 (not (at red2)))
(at red3)
(visited red3)

:goal (visited red4) [500] - hard
:now 207.0)

All goals are on propositions from the set of boolean flu-
ents in the problem, and there can only be one goal on any
given proposition. In the default setting, goals are hard, lack
deadlines and have zero reward1. All fields in an update
specification, with the exception of “:now” (representing the
time we expect to begin executing the plan), may be repeated
as many times as required, or left out altogether. The in-
tent of allowing such a flexible representation for updates
is to provide for accumulation of changes to the world in
one place. In the particular example provided, a new object
“red3” of type “zone” is declared. In addition, three new
events are defined, one of them with a temporal annotation

1Since these goals are hard, they can be seen as carrying an in-
finite penalty; i.e., failing to achieve even one such goal will result
in plan failure.



73

that describes the time at which that event became true. A
new hard goal that carries 500 units of reward is also spec-
ified, and the update concludes with the specification of the
current time.

As discussed by (Cushing, Benton, and Kambhampati
2008), allowing for updates to the planning problem pro-
vides the ability to look at unexpected events in the open
world as new information rather than faults to be corrected.
In our setup, problem updates cause the monitor process to
restart the planner (if it is running) after updating its internal
problem representation.

Goal and Knowledge Revision
An important problem that the robot (and planner) must deal
with is the specification of the goals that must be achieved in
a given task. This goal specification may consist of the ac-
tual goals to be achieved, as well as the values of achieving
such goals, and priorities and deadlines (if any) associated
with these goals. The fact that the system’s goals are deter-
mined and specified by the human in the loop also introduces
the possibility that goals may be specified incompletely or
incorrectly at the beginning of the scenario. Such a contin-
gency mandates a need for a method via which goals, and
the knowledge that is instrumental in achieving them, can
be updated.

The biggest planning challenge when it comes to the prob-
lem of goal update and revision is that most state-of-the-art
planning systems today assume a “closed world” (Etzioni,
Golden, and Weld 1997). Specifically, planning systems ex-
pect full knowledge of the initial state, and expect up-front
specification of all goals. Adapting them to handle the “open
worlds” that are inherent in real-world scenarios presents
many challenges. The open world manifests itself in the
system’s incomplete knowledge of the problem at hand; for
example, in the search and report scenario, neither the hu-
man nor the robot know where the injured humans may be.
Thus an immediate ramification of the open world is that
goals may often be conditioned on particular facts whose
truth values may be unknown at the initial state. For exam-
ple, the most critical goal in the USAR scenario – reporting
the location of injured humans – is conditioned on finding
injured humans in the first place. In this section, we de-
scribe recent work on bridging the open nature of the world
with the closed world representation of the planner that has
been done in the context of the USAR problem.

Open World Quantified Goals
Open world quantified goals (OWQG) (Talamadupula et al.
2010) combine information about objects that may be dis-
covered during execution with partial satisfaction aspects
of the problem. Using an OWQG, the domain expert can
furnish details about what new objects may be encountered
through sensing and include goals that relate directly to the
sensed objects. Newly discovered objects may enable the
achievement of goals, granting the opportunity to pursue re-
ward. Formally, an open world quantified goal (OWQG) is
a tuple Q = 〈F,S,P, C,G〉 where F and S are typed vari-
ables that are part of the planning problem. F belongs to

the object type that Q is quantified over, and S belongs to
the object type about which information is to be sensed. P
is a predicate which ensures sensing closure for every pair
〈f, s〉 such that f is of type F and s is of type S, and both
f and s belong to the set of objects in the problem, O ∈ Π;
for this reason, we term P a closure condition. C =

∧
i ci

is a conjunctive first-order formula where each ci is a state-
ment about the openness of the world with respect to the
variable S. For example, c = (in ?hu - human ?z -
zone) with S = ?hu - human means that c will hold for
new objects of the type ‘human’ that are sensed. Finally G
is a quantified goal on S.

Newly discovered objects may enable the achievement of
goals, granting the opportunity to pursue reward. For ex-
ample, detecting a victim in a room will allow the robot to
report the location of the victim (where reporting gives re-
ward). Given that reward in our case is for each reported
injured person, there exists a quantified goal that must be al-
lowed partial satisfaction. In other words, the universal base,
or total grounding of the quantified goal on the real world,
may remain unsatisfied while its component terms may be
satisfied.

As an example, we present an illustration from our sce-
nario: the robot is directed to “report the location of all in-
jured humans”. This goal can be classified as open world,
since it references objects that do not exist yet in the plan-
ner’s object database; and it is quantified, since the robot’s
objective is to report all victims that it can find. In our syn-
tax, this information is encoded as follows:

1 (:open
2 (forall ?z - zone
3 (sense ?hu - human
4 (looked_for ?hu ?z)
5 (and (has_property ?hu injured)
6 (in ?hu ?z))
7 (:goal (reported ?hu injured ?z)
8 [100] - soft))))

In the example above, line 2 denotes F , the typed variable
that the goal is quantified over; line 3 contains the typed
variable S—the object to be sensed. Line 4 is the unground
predicateP known as the closure condition (defined earlier).
Lines 5 and 6 together describe the formula C that will hold
for all objects of type S that are sensed. The quantified goal
over S is defined in line 7, and line 8 indicates that it is a
soft goal and has an associated reward of 100 units. Of the
components that make up an open world quantified goal Q,
P is required2 and F and S must be non-empty, while the
others may be empty. If G is empty, i.e., there is no new goal
to work on, the OWQG Q can be seen simply as additional
knowledge that might help in reasoning about other goals.

Handling OWQGs in the Planning System
To handle open world quantified goals, the planner grounds
the problem into the closed-world using a process similar to

2If P were allowed to be empty, the planner could not gain
closure over the information it is sensing for, which will result in
it directing the robot to re-sense for information that has already
been sensed for.
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Skolemization. More specifically, we generate runtime ob-
jects from the sensed variable S that explicitly represent the
potential existence of an object to be sensed. These objects
are marked as system generated runtime objects. Given an
OWQGQ = 〈F,S,P, C,G〉, one can look at S as a Skolem
function of F , and runtime objects as Skolem entities that
substitute for the function. Runtime objects are then added
to the problem and ground into the closure condition P , the
conjunctive formula C, and the open world quantified goal G.
Runtime objects substitute for the existence of S dependent
upon the variable F . The facts generated by following this
process over C are included in the set of facts in the problem
through the problem update process. The goals generated
by G are similarly added. This process is repeated for every
new object that F may instantiate.

We treat P as an optimistic closure condition, meaning
a particular state of the world is considered closed once the
ground closure condition is true. On every update the ground
closure conditions are checked and if true the facts in the cor-
responding ground values from C and G are removed from
the problem. By planning over this representation, we pro-
vide a plan that is executable given the planning system’s
current representation of the world until new information
can be discovered (via a sensing action returning the clo-
sure condition). The idea is that the system is interleaving
planning and execution in a manner that moves the robot to-
wards rewarding goals by generating an optimistic view of
the true state of the world.

Conclusion
In this paper, we proposed the demonstration of a robotic
agent being guided through a complex search and rescue
scenario by a planning system. We discussed the motiva-
tion behind using a planner in such a task, and described the
scenario in detail. We then gave a brief overview of the plan-
ning system in use, and the procedure via which the plan-
ner’s world knowledge is updated. Following this, we visit
the problem of updates to the agent’s goals, and describe a
construct that enables the planner to deal with such updates.
We conclude with an explanation of how this construct is
accomodated into the planning system.
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Abstract

Lean Document Production (LDP) is a novel class of
productivity-enhancement offerings that were originally in-
vented at the Xerox Research Center Webster (XRCW) for
the $100 billion printing industry in the United States. Im-
plemented by Xerox in over 100 sites to date, LDP has pro-
vided dramatic productivity and cost improvements for both
print shops and document-manufacturing facilities, as mea-
sured by reductions of 20∼40% in revenue-per-unit labor
cost. LDP has generated over $200 million of incremental
profit across the Xerox customer value chain since its initial
introduction in 2000. In the past three years, PARC’s Em-
bedded Reasoning Area has been collaborating with XRCW
to extend the scheduling capabilities of the LDP toolkit. We
describe a number of newly added features such as adaptive
batch splitting, multi-site scheduling and multi-core paral-
lelization that have significantly improved the performance of
our AI search-based scheduler for print shops of all sizes, par-
ticularly for those large document-production facilities that
can process thousands of monthly jobs on a diverse set of
document-production equipment with non-uniform speed and
sequence-dependent setup times.

Introduction
The provision of services that improve business productivity
is a major component of Xerox’s growth strategy. These ser-
vices include the outsourcing and improvement of customer
print-shop operations. Since 1999, Xerox has invented,
tested, and implemented a novel class of productivity-
improvement offerings, trademarked LDP Lean Document
Productionr solutions (Rai et al. 2009), for the printing in-
dustry. The size of the market for these offerings, which
have created dramatic productivity and cost improvements
for both print shops and document-manufacturing facilities,
is $100 billion in the United States alone. They have greatly
expanded the applications of automated scheduling tools and
operations-research techniques in the printing industry.

Xerox Corporation participates in the printing industry in
a number of ways; one is as a provider of services, via Xe-
rox Managed Services (XMS), to manage print operations
for clients who choose to outsource their in-plant print oper-
ations, called in-plants. In the 1990s, Xerox was extremely
successful in growing revenues and profits in this segment
by utilizing highly automated printing and reprographics
equipment as a vehicle to offer print-shop outsourcing at a

Rai et al.: LDP Lean Document Production
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Print shops are document manufacturing systems
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Figure 1: A print-production workflow shows the various production operations (work-in-progress is denoted
by WIP).

Prepress: Performs tasks such as inspecting incom-
ing print jobs, editing jobs for color quality and accu-
racy, creating proofs, and working with the customer
service and printing departments to coordinate pro-
duction.

Printing: Prints the document. For offset printing,
these activities include preparing the offset plates,
performing setups on the offset (lithographic) presses,
loading paper and ink, performing run-time color cor-
rections, off-loading printed material, and transport-
ing it to the finishing department. For digital print-
ing, the input to printers is an electronic print stream,
and the output consists of printed documents. Digi-
tal printing is used for jobs with a short run-length
and high variable content. Digital printing technology
is characterized by low setup, simple interfaces, and
small equipment size.

Finishing department: Takes printed material as
input and performs a variety of finishing operations,
such as folding, cutting, saddle-stitching, binding,
and packaging.

Mailing: Packs and labels the finished goods and
ships them to customers.

Any design and operations methodology for print
production must comprehend both digital and off-
set printing workflows independently and when they
coexist. Offset printing is the dominant printing tech-
nology used today (US Census Bureau 2008). More
than 98 percent of print-production revenue is associ-
ated with offset and offset-like technology. Neverthe-
less, customer demand for more personalized docu-
ments, quicker turnaround time, lower overhead and
setup costs, and geographically distributed printing
has led to the migration of offset workflows to on-
demand digital-printing workflows for monochrome
printing. As color digital systems, which produce
print quality that is equivalent to or better than offset
print quality at competitive costs, are developed, the
same migration is expected to occur for color docu-
ments. However, both workflows are expected to coex-
ist within the printing industry for the foreseeable
future.

Challenges in Print-Shop
Productivity Improvement
Document production has unique characteristics that
make it difficult to operate print shops efficiently.

Figure 1: Print-shop workflow (WIP stands for work-in-progress).

much lower cost than was characteristic of the typical in-
plant of the day. However, other firms have since offered
comparable, highly automated equipment and outsourcing
services based on the use of such equipment. Thus, XMS
revenues and margins came under significant pressure. LDP
was conceived and invented as a set of offerings that would
reestablish Xerox’s reputation as the leading print-shop pro-
ductivity enhancer in the industry and, in the process, in-
crease XMS revenues and profits.

Workflow in Print-Shop Environment: Print shops can
be classified into three categories based on the activity that
they perform: transaction printing, on-demand publishing,
or a combination of both. LDP solutions encompass all
three print-shop domains. Typically, each of the six steps
in the print production workflow is associated with a spe-
cific department: (1) customer service and production plan-
ning, (2) graphics design, (3) prepress, (4) printing, (5) fin-
ishing department, and (6) mailing. Any design and oper-
ations methodology for print production must comprehend
both digital and off-set printing workflows independently
and when they coexist. Figure 1 shows the various opera-
tions that are performed in typical print-shop workflows.
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Challenges in Print-Shop Productivity
Improvement

Document production has unique characteristics that make
it difficult to operate print shops efficiently.
• Long bid times: Customers often want to see physical

proofs before committing to the entire print job.
• Variability in workflow types: The workflow required to

process print jobs varies considerably from job to job.
• Variability in job-size distribution: Print shops experience

significant fluctuations in demand and jobs submitted to
even the same shop can have sizes (e.g., number of pages)
that differ by several orders of magnitude.

• Variability in equipment capability and speed: Print shops
can host a large number of non-uniform devices, each of
which may have some unique capabilities and run at vari-
ous speeds under different operation modes or conditions.

• Variability in setup times: The setup time of even a single
document-production device can change dramatically, de-
pending on the kind of job that was processed previously
on the device.

• Variability in labor and equipment: Print shops are often
labor intensive, with many manual processing steps.

• Departmental production and scheduling: Print shops
typically organize their equipment and labor into specific
functional departments to improve utilization of resources
and maintain a labor force skilled in specific tasks.
These characteristics pose significant challenges for de-

veloping a standardized productivity-improvement method-
ology that is scalable and adaptable across multiple printing
environments.

LDP Scheduling
In this section, we describe how LDP selects and schedules
jobs for the print shop. Figure 2 shows LDP’s two-level ar-
chitecture in which jobs submitted to the shop are distributed
to one or more “mini-shops” called cells for production (Rai
and Viassolo 2003). This is a radical departure from tradi-
tional department-style print shop designs in which equip-
ment performing the same or similar functions is clustered
together (e.g., all the printers reside in a “printers-only” area,
all the finishing devices in a “finishers-only” area, and so
on). In contrast, a cell in LDP normally contains a diverse
set of machines that can perform different functions.

LDP’s cellular design methodology effectively unites var-
ious machines and human operators involved in different
stages of document production to significantly boost print-
shop productivity. The reason is that a cellular design allows
each cell to be optimized separately for a better match of the
characteristics of the print jobs to the production capabili-
ties of the cell. As a beneficial side effect, work-in-progress
(WIP) in LDP-enhanced shops is usually much lower than
traditional shops, thanks to the close proximity of the ma-
chines residing in the same cell.

Figure 3 shows the block diagram of LDP’s scheduling
system, which takes as inputs a shop definition file and a
jobs definition file.

Figure 2: LDP’s two-level architecture.

Shop definition: The shop definition file contains informa-
tion regarding all aspects of the shop, which most closely re-
sembles the domain (i.e., operators) file in PDDL planning.
More specifically, a shop comprises of
• Schedule: This is the shop-level schedule that describes

the operational hours of the entire shop (e.g., 8am ∼ 5pm
everyday, except for weekends), which can be used as the
default schedule for the machines and human operators in
the shop.

• Sequencing policy: The sequencing policy determines the
order in which the jobs are scheduled. Currently, the sys-
tem supports the following policies: (1) first in first out,
(2) earliest due, (3) least slack, and (4) minimum process-
ing time. Of course, more policies can be added, which
can be done easily with the current implementation.

• Machines: Each machine is identified with a unique
name, and is capable of performing a set of function
sequences with various speeds, setup times (which may
depend on the attributes of the previous job), and pric-
ing information. Optionally, each machine can have
its own schedule (e.g., scheduled maintenance between
3∼4pm on Thursday), which overrides the default shop-
level schedule.

• Operators: Each human operator is identified with a
unique name and possesses a set of skills for performing
manual steps (e.g., inspection) and supervising machine
operations, which are identified by the names of the ma-
chine function sequences the operator knows how to op-
erate (e.g., color printing on a continuous-feed printer). In
addition, each operator can have his or her own schedule
(e.g., working from 9am to 4pm Monday through Friday)
that overrides the default shop-level schedule.

• Cells: Each cell is made up of a group of human opera-
tors and a list of machines they operate or supervise. In-
dividual cells can enable or disable batch splitting, which
allows the division of a big job into smaller pieces called
batches, to further improve throughput. For scheduling
flexibility, each cell can choose to ignore the schedules
of its operators when assigning jobs to machines, assum-
ing the production schedule is machine-bound instead of
operator-bound. The default scheduling option, however,
requires that the schedules of both the machines and the
human operators be taken into account.
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Figure 3: LDP scheduling system overview.

Jobs definition: The jobs definition file contains detailed
information regarding the list of jobs submitted to the shop,
which most closely resembles the problem instance (i.e.,
facts) file in PDDL planning. More specifically, a job com-
prises of
• Temporal constraints: The arrival and due dates of a job

are provided when the job is submitted.
• Resources: Each resource is identified by a unique name

(within the job) and describes the quantities required to
complete a particular document-production step (e.g., 100
color pages must be printed for the color-print step)

• Function steps: Each function step is a unit operation
(e.g., color printing on letter-sized paper), which has a
(possibly empty) set of input resources and produces a
(possibly empty) set of output resources. This is simi-
lar to the precondition and effects in STRIPS, except that
the duration of each step is non-uniform, depending on
the quantities defined in the resources. The steps them-
selves do not have to form a linear sequence of actions,
as in sequential planning. Parallel steps are quite com-
mon in print-shop operations (e.g,. the front, the body,
and the back matter of a book can be produced simulta-
neously). Each step can have a set of attributes, which
are used to compute the setup time as follows: for each
attribute that is changed (compared to the attribute of the
last job that was processed on the same machine), a cor-
responding penalty is added to the setup time.
To schedule multiple jobs, LDP first invokes a job se-

quencer that orders these jobs according to one of the four
sequencing policies shown in the middle of Figure 3. Jobs
appearing earlier in the sequence are scheduled before those
that appear later. Once the sequence of jobs has been de-
cided, they are fed to a scheduler one at a time such that
each subsequently scheduled job must respect all the con-
straints imposed by those jobs that were scheduled before
it. This is obviously a greedy policy that does not guaran-
tee global optimality. However, in practice we have found
it works reasonably well in various print shop configura-
tions and job mixes. When faced with multiple schedul-
ing choices, the scheduler always picks the one that fin-
ishes the last job as early as possible, essentially favor-
ing plans with a shorter makespan. Note that a similar

greedy-search strategy was also used in the Tightly Inte-
grated Parallel Printing (TIPP) project that the PARC re-
searchers have worked on previously (Do et al. 2008;
Ruml et al. 2011).

Upon the completion of the last job in the sequence, the
scheduler returns a number of statistics designed to summa-
rize the quality of the schedules found. These statistics in-
clude average processing and job turnaround times, average
and maximum lateness, and the number of late jobs, among
others. They can be used as part of a feedback loop (as in-
dicated by the dashed line in Figure 3) to improve the lay-
out of a shop, because as the job mix changes, so must a
cellular design for the shop. In an earlier implementation,
the toolkit uses a stochastic simulator to generate the per-
formance statistics, which can vary slightly from one run
to another. The search-based scheduler developed by us is
the first deterministic scheduler for LDP. From a practical
implementation viewpoint, having a deterministic scheduler
makes it easy to operationalize our toolkit, since the result-
ing schedules are free of any idiosyncracy produced by a
particular run of the scheduler.

Advanced Features in LDP Scheduling
We next describe a number of advanced features that are first
made available in our deterministic scheduler.

• Adaptive batch splitting: An important throughput-
enhancement strategy in LDP is batch splitting, which
chops a large job into a number of smaller units called
“batches.” The idea is to eliminate downstream waiting
as soon as some portion of a long job is ready for fur-
ther processing. In an earlier version, the batch size is
calculated using fixed formulae that do not adapt to the
dynamic workload of each cell. Later on, we designed
a fully adaptive strategy that first sub-divides a long job
into sufficiently many batches, followed by a merge phase
in which the algorithm recursively combines two batches
that can be scheduled back to back on the same machine,
to ensure only a minimal number of batches are created.

• Multi-site scheduling: We extended our basic single-
site scheduler to a distributed production environment in
which multiple geographically separated sites can effi-
ciently coordinate with one another to share the work-
load while respecting all their individual resource and
sequencing policy constraints. It takes into account the
transportation delays between multiple sites when making
scheduling choices. Our computational results show huge
reductions in the number of late jobs and average turn
around time compared to the single-site equivalent that
treats each site as an isolated shop. Multi-site schedul-
ing enables better resource utilization and cost reduction,
currently a popular trend in the printing industry.

• Multi-core parallelization: To support efficient paral-
lelization of the scheduler on modern processors, We de-
veloped a multi-core version of our scheduler that uses
shared-memory parallelization (based on POSIX threads)
to achieve near linear speedup in the number of processor
cores used. This is particularly beneficial for multi-site
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scheduling, which typically deals with thousands of jobs
and a number of cells in each site. Compared to the earlier
versions (implemented in Java), our latest C++ implemen-
tation is not only much faster as measured in wall-clock
times, it is also significantly more memory-efficient. This
allows our scheduler to handle larger shops with many
more jobs than its predecessors.

Lessons Learned
There are a number of valuable lessons that we learned in
the process of developing the LDP scheduler. We highlight
a few below.

First, we found that real-world data of print shops and jobs
typically contain a great deal of noises such as inconsistent
or missing fields. As a result, we had to spend a lot of time
on data cleaning and consistency checking to make sure they
accurately model the real print-shop environments and jobs.
To mitigate such a laborious and error-prone task, we devel-
oped an automated consistency checking tool and embedded
it inside our scheduler. The tool has been invaluable to us,
as it uncovered a number of modeling bugs in existing LDP
scenarios that were supposed to be already cleaned.

Second, a well-designed GUI can be crucial to customer
adoption and can have a significant impact on the overall
productivity of the system. With an earlier version of the
toolkit, the feedback we received from the customers was
that it could take a while to use all the LDP functionalities
and the learning curve was somewhat steep. In the later re-
leases, efforts have been made to simplify and streamline
the GUI to make it more accessible to average users. This
is very well received by the customers. Figure 4 shows a
sample screenshot of the LDP toolkit in its shop definition
mode. As shown in the left panel, the toolkit includes the
Job Editor, Scheduling, Reporting, Simulation, Monitoring,
Job Factory, as well as other tools.

Third, we found it interesting that although the model-
ing language used by LDP does not resemble much of a
“domain-independent” planning language used in the re-
search community, it is actually quite adequate for the print-
shop scheduling applications. More surprisingly, it appears
that this somewhat domain-specific language can be ex-
tended (at a reasonable cost) to other scheduling applica-
tions beyond printing, such as the generic job-shop schedul-
ing problems (Pinedo and Chao 1998) found in many other
industries. This experience has taught us a lesson on where
to strike a good balance between domain independence and
scheduler efficiency. From the end user’s perspective, which
planning language to use is likely a low-visibility issue,
since all they interact with is the GUI, and whether it is
PDDL or LDP’s XML-based, domain-specific language un-
der the hood is of little concern to the end user.

Conclusion & Future Work
We have presented a real-world print shop productivity en-
hancement tool called LDP that has generated significant
revenues for Xerox and its customers. It has roots in cellular
manufacturing seen in the automobile industry yet its solu-
tions have all been successfully adapted for and validated by

Figure 4: LDP toolkit screenshot.

the printing industry.
In the future, we plan to take the same approach and

practice in lean manufacturing, as embodied by our LDP
toolkit, to other application domains with similar character-
istics. We believe our experience in bringing simple yet ef-
fective scheduling techniques to realistic production systems
has values beyond the document-production world.
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