
Extracting Incomplete Planning Action Models from
Unstructured Social Media Data to Support Decision Making

Lydia Manikonda1, Shirin Sohrabi2, Kartik Talamadupula2, Biplav Srivastava2, Subbarao Kambhampati1
1School of Computing, Informatics, and Decision Systems Engineering, Arizona State University

2IBM T. J. Watson Research Center
{lmanikonda, rao}@asu.edu, {ssohrab, krtalamad, biplavs}@us.ibm.com

Abstract

Despite increasing interest in leveraging the wealth of
online social media data to support data-based deci-
sion making, much work in this direction has focused
on tasks with straightforward “labeling” decisions. A
much richer class of tasks can benefit from the power of
sequential decision making. However, supporting such
tasks requires learning some form of action or decision
models from unstructured data – a problem that had
not received much attention. This paper leverages and
extends machine learning techniques to learn decision
models (incomplete action models) for planning from
unstructured social media data. We provide evaluations
showing the potential of unstructured data to build in-
complete planning action models, which can further be
extended to build PDDL-style action models for many
real-world domains. Our models can be used to support
novel quantitative analysis of online behaviors that can
indirectly explain the offline behaviors of social media
users.

1 Introduction
There is a growing interest in exploiting the burgeoning
amount of user-generated data on the Internet – especially
on social media platforms – to provide data-based decision
support. While the initial wave of work in this direction was
limited to support single labeling decisions (e.g. recommen-
dations), there is an increasing interest in supporting more
complex scenarios that require planning and other forms of
sequential decision making. A prime example is the cate-
gory of tasks that are classified as “self-help”, and which
involve a number of steps and often complicated sequences
of actions. Examples here include quitting smoking, losing
weight, or traveling the world. A number of online groups
contain a plethora of crowd-generated wisdom about appro-
priate courses of action that have worked for a variety of
different individuals. The main problem we consider in this
paper is the extraction of such information so that it can be
applied towards an automated way of helping new users with
similar goals. Such automated approaches need not be re-
stricted to plan synthesis alone; they can also include a num-
ber of other sequential decision making problems including
plan critiquing, plan ranking, and even merely the extraction
of plan traces that can be used as input to existing model-
learning methods.

Although there exists a large body of literature on plan-
ning and decision making, almost all of it assumes that the
action model has been specified a priori. This has turned
into a very pressing bottleneck for the AI planning com-
munity as a whole, where planning techniques depend very
heavily on the availability of complete and correct mod-
els (Kambhampati 2007). One of the challenges that must be
overcome to tide over this problem is to extract usable causal
relationships from unstructured natural language data on so-
cial media. This can be a very daunting problem, since social
media posts are made in unrestricted natural language, and
meant for human consumption. The text from these posts
can be highly nuanced and extremely arbitrary, making au-
tomated extraction of causal relationships and action models
an AI-complete task.

While parsing individual posts can be arbitrarily hard, our
aim is to investigate if the massive scale and redundancy of
the posts might nevertheless help extract reasonable approx-
imations of causal and action models. We hypothesize that
the feasibility of this endeavor might increase if we further
focus on the so-called shallow models (c.f. (Kambhampati
2007; Tian, Zhuo, and Kambhampati 2016)). To this end,
we propose and experiment with a six-phase pipeline that
leverages shallow natural language processing (NLP) tech-
niques to extract incomplete causal relationships. We en-
vision that these relationships can be extended to generate
complete PDDL-style domain models, in the spirit of (Sri-
vastava and Kambhampati 2005) – however, this specifically
is not the main focus of this paper.

As mentioned earlier, such approximate causal models
can be utilized to automatically explain (c.f. plan expla-
nation, plan critiquing) the experiences shared by users on
online social media towards achieving their personal goals.
In order to achieve this, our proposed pipeline addresses five
main tasks: (1) extract actions from users’ posts; (2) pro-
cess the extracted actions to reduce redundancy; (3) build
plan traces from the extracted actions; (4) construct an ac-
tion precedence graph from these traces; and (5) plan using
these precedence graphs. While we focus on an end-to-end
solution, mid-stream output from our pipeline—e.g. plan
traces—can also be fed to existing approaches for learning
action models from complete, partial, or noisy plan traces
(c.f. (Yang, Wu, and Jiang 2007; Tian, Zhuo, and Kamb-
hampati 2016)). We evaluate the plans – which are repre-
sented as shallow workflows – to demonstrate the utility of



subreddit Main goal
(/r/stopsmoking) How to quit smoking ?
(/r/C25K) With no experience of running, how to run a 5K ?
(/r/weddingplanning) How to plan for a wedding ?

Table 1: Subreddits and their main goals

our novel six-phase pipeline. Within the current context, we
define (shallow) workflows as a sequence of actions where
the final action in the sequence is/achieves the user’s goal.

In the rest of this paper, we will describe the details of our
proposed pipeline; we first focus on explaining the data in
Section 2. Details of the six-phase pipeline that we imple-
mented, including the metrics for evaluating the action mod-
els we extracted to support sequential decision problems, are
presented in Section 3. Section 4 describes the evaluation
methodology and the results obtained through quantitative
and qualitative analyses. Section 5 presents the related work
focusing on how the existing literature and the proposed so-
lution through the pipeline are different. Section 6 concludes
the paper with a discussion on future work.

2 Data
In this paper, we utilize social media data to identify the
important actions which are described by the users try-
ing to achieve a goal. Towards this goal, we consider
posts from the popular social news website called “Reddit”
(https://www.reddit.com/) where the registered users submit
content in different forms like web urls or text posts. Along
with sharing content, users can comment and vote on a given
post (up or down votes) that determines the popularity or
rank of a post in a given thread. The content entries on this
platform are designed in a tree format where each branch
of a tree represents a sub-community referred as “Subred-
dit”. Each subreddit is categorized to a particular domain
that ranges from being very general to sometimes very per-
sonal.

We used the Python Wrapper for Reddit API1 to crawl
posts and their metadata from three different subreddits
shown in Table 1. For the ease of reading, we represent the
subreddit ‘/r/stopsmoking’ as Quit Smoking; ‘/r/C25K’ as
Couch to 5K; ‘/r/weddingplanning’ as Wed. Planning. Note
that the entire pipeline is automated and there is no man-
ual intervention in any of the processes. Table 2 provides
the relevant statistics about the raw dataset and the actions
extracted by the pipeline to build an action model.

3 Pipeline
We utilize the automated planning and NLP techniques to
build a six-phase pipeline (as shown in Figure 1). This
pipeline utilizes the raw unstructured social media data to
extract structured shallow workflows. The main contribu-
tions or the challenges addressed by this pipeline are: 1) ex-
tract the plan traces from the raw unstructured data, 2) utilize
the plan traces for building an incomplete action model that
are capable of generating workflows that are near optimal.
Our main contribution lies in considering the unstructured

1https://praw.readthedocs.io/en/latest/index.html

Domain Name

Quit Smoking Couch to 5K Wed. Planning

# Users 787 604 969
Tot. # of traces 1598 1131 3442
Avg. trace len. 17.97 16.7 21.29

# Unique Actions (orig) 1712 1299 2666
# Unique Actions (model) 234 194 355
# Pre-actions 1499 1060 2795

(117,6.4,16.9) (84,5.5,13.8) (170,7.9,22.5)
# Post-actions 1398 982 2619

(31,6,6.5) (29,5.1,5.6) (37,7.4,8.2)

Table 2: Statistics of users, plan traces and actions. Num-
bers in bracket are max, avg and std. dev.; min=1; Unique
Actions (orig) are the set of actions that are extracted from
the crawled raw data; Unique Actions (model) are the set of
actions obtained after generalization.

social media data and building shallow models which are
capable of generating plans that are near optimal.

Achieving the first goal is an important contribution of
this paper, as most of the existing work (e.g., (Gregory
and Lindsay 2016; Tian, Zhuo, and Kambhampati 2016;
Yang, Wu, and Jiang 2007; Yoon 2007)) for domain model
acquisition, assume that the plan traces required are readily
available. Hence, these systems may not be functional when
the traces are not available. To address the first challenge we
mentioned earlier, the pipeline utilizes raw unstructured so-
cial media data that is processed to remove redundancies and
repetitions to extract plan traces in lifted representations. To
address the second challenge, these plan traces are utilized
to compute the probabilities which determine the causal re-
lationships between actions to finally build an incomplete
action model. For each of the three domains we described in
Section 2, we automatically extract the important actions to
build a shallow model that is used to generate workflows.

The pipeline consists of six different components which
are executed sequentially. The six different components of
this pipeline shown in Figure 1 consists of: (1) fragment
extractor - filtering the available data or posts to find the rel-
evant posts, given a particular goal; (2) action extractor -
identifying the candidate list of action names and their pa-
rameters as well as the initial plan fragment; (3) general-
izer - grouping similar action names into the same cluster;
(4) trace builder - converting the posts into plan traces; (5)
sequential probability learner: learning the ordering among
actions; (6) model validator: validating the extracted model.
More details about each of the component are explained in
detail below along with a running example.

3.1 Phase-1: Fragment Extractor
The main goal of this component is to extract the fragments
from the corresponding subreddit. We define fragment as
the relevant post that contains information about achieving
the given goal of the subreddit. An individual fragment may
contain more than one action that helps achieve the goal. To
do this, we first crawl the individuals who are actively par-
ticipating on a subreddit associated with a given goal. We



Figure 1: Six-phase pipeline

crawl the timelines of these individuals that we assume are
the sequence of actions or a workflow that helps these indi-
viduals to achieve the given goal. We define timeline as the
set of goal-related posts shared by the same user chronolog-
ically.

Running example [relevant posts]: I spent few weeks drink-
ing and partying. In a similar situation in the past, I take a
cigarette and used to smoke pretty much non-stop. But this
season I was assaulted by the triggers. Smoking in restau-
rants, communal areas. Many times I thought I can get a
cigarette now. But those thoughts were always chased by
reason and the power of conviction I have to quit smoking.

The running example is taken from the Quit Smoking do-
main. This example is an excerpt of a post shared by a user
on Reddit whose main goal is to quit smoking. In this study,
we consider each post made by a user as a plan trace. Posts
made by all users on this subreddit are aggregated to build
the model in latter steps.

3.2 Phase-2: Action Extractor
Each post may have more than one sentence, where each
sentence may have more than one verb. For each sentence,
we extract the verbs and their corresponding nouns using
the Stanford part of speech tagger (Toutanova et al. 2003), a
state of the art tagger with reported 97.32% accuracy. The
extracted verbs are the candidate list of action names. We as-
sume that the order of sentences in a post is indicative of the
order of actions we extract from them. In the plan trace, the
extracted action names from the first sentence will appear
before the extracted action names from the second sentence.

Along with the action names (verbs), we also extract the
action parameters (nouns) using the similar strategy and
attach the most frequently co-occurring action parameter
(noun) with a given action name (verb). For this pipeline,
we assume that each action (verb) will have only one ac-
tion parameter (noun) and two action words can have the
same action parameter. For example, assume that there is
an action ai in our dataset which occurs in multiple plan
traces and co-occurs with nouns na, nb and nc. Noun with
the largest co-occurrence frequency with ai is chosen to be
the action parameter for ai. In the examples provided in
this paper, action parameters are attached to an action as
<action name> <action parameter name> (or sometimes
we use <action name> (<action parameter name>) in-
terchangeably). Since certain English words can be clas-
sified as multiple parts of speech tags, we make similar as-
sumptions.

Running example: [action names]: spent smoke drink beer
party hard take day smoke day assault trigger smoke day
thought smoke chase life quit smoke

From the post made by the user obtained in phase-1, we

extract all the verbs and their associated nouns. We assume
that the sequentiality among actions is pre-established in the
original post made by the user. This assumption sets a con-
straint that all the verbs extracted are ordered in the same
way they occur in the post made by the Reddit user. Since
the word ‘smoke’ can be either a noun or verb, we see the
similar pattern in this extracted set of actions and their cor-
responding parameters.

3.3 Phase-3: Generalizer
Since we are handling unrestricted natural language text, it
is normal that a same action is used to represent this action’s
synonyms. Across the aggregated set of posts, there might
be verbs that can summarize or subsume a given verb. This
motivated us to utilize hierarchical agglomerative clustering
approach where low level actions are expressed in high level
format. Performing this operation helps reduce the redun-
dancy of actions.

To remove redundant actions, we utilize the agglomera-
tive clustering approach to group semantically similar ac-
tions. When clustering the actions, only the action names
are considered and their parameters are ignored. This
approach (Han, Kamber, and Pei 2011) utilizes Leacock
Chodorow similarity metric (lch for short)2 to measure the
distance between any two given actions (Wi andWj – action
words). This is one of the popular metrics utilized to com-
pute the semantic similarity between pairs of words. The lch
similarity is computed as follows:

Sim(Wi,Wj) =Max[log2D − logDist(ci, cj)] (1)

where Dist(ci, cj) is the shortest distance between concepts
ci and cj (a concept is the general notion or abstract idea)
and D is the maximum depth of a taxonomy.

We consider a threshold metric (or closeness metric) α
to verify the quality and stop the process of agglomeration.
The agglomerative clustering algorithm terminates when the
closeness metric is greater than the linkage metric at any
given point of time. In hierarchical clustering, there are
three different types of linkage metrics – single, complete
and average. In this paper, we utilize the complete link-
age metric as the Clustering Quality (we refer to as cq)
measured is higher (cq=8.33) compared to the other link-
age metrics (single (cq=5.23) and average (cq=7.17)). The
formal equation to compute the complete linkage metric is
max{d(a, b) : a ∈ A, b ∈ B} where, d(a, b) is the dis-
tance metric, A and B are two separate clusters. When the
algorithm terminates, semantically similar actions will be
grouped into the same cluster.

Each cluster may have more than a single action that re-
quires us to find a unique cluster representative. To do

2http://www.nltk.org/howto/wordnet.html



this, we utilize a popular statistic from Information Retrieval
community – Term Frequency–Inverse Document Frequency
to rank all the actions present in a cluster based on this met-
ric. For each cluster, we choose the top-ranked action with
the highest tfidf value to be the representative of the respec-
tive cluster. The original parameter associated with this ac-
tion word is continued to be the action parameter after this
action word is chosen to be the cluster representative. The
statistic can be computed as shown in equation 4 that uses
the TF and IDF equations in 2 and 3 respectively.

tf(t, d) =
ft,d

maxft′ ,d : t
′ ∈ d

(2)

idf(t,D) = log
N

|d ∈ D : t ∈ d|
(3)

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D) (4)

where t is the given action; d is the set of raw posts shared by
a given user; D is the super set of all sets of raw posts made
by all the users in our raw dataset (where |D| will be equal
to the number of unique users in our dataset). Each cluster
will be represented by a unique top-ranked action word.

Running example: [clustering]: We map the action names
to the cluster representatives of their corresponding cluster.
spent→ spend, drink→ party, take→ taken

3.4 Phase-4: Trace Builder
The initial plan fragments are converted into plan traces by
replacing the action names with their corresponding cluster
representatives3. This process is repeated on all the posts to
build the traces.

Running example: [rebuilding plan traces]: initial plan
fragment: [spent smoke, drink beer, party hard, take day,
smoke day, assault trigger, smoke day, thought smoke,
chase life, quit smoke], plan trace: [spend time,
party hard, taken hold, smoke day, assault trigger,
smoke day, thought smoke, chase life, quit smoke]

The actions in the running example such as spent,
drink, take are represented in their corresponding high
level mapped format. Since drink is mapped to party,
drink beer is represented as party hard. In the plan frag-
ment, [spend time, party hard, party hard, taken hold, . . . ],
two ‘party’ actions are occurring sequentially. Hence, we re-
move repetitions and include only one such instance. How-
ever, in general a plan may include repeated actions and we
acknowledge that our system may miss out on those plans
with repeated actions.

3.5 Phase-5: Sequence Probability Learner
After extracting the plan traces, we then extract the pre-
actions and post-actions for any given action. Due to co-

3Note, it is possible to replace two sequential action names by
the same cluster representative. In that case we remove the repeated
action name; hence, reducing the length of the plan trace. For ex-
ample, if the representation of a plan trace is: [a1, a2, a2, a5, a8],
after post-processing it will be converted to [a1, a2, a5, a8].

occurrence in the plan traces, actions are inter-related to
other actions with a probability (p(ai, aj)) describing the
chance of action aj following action ai. This probability
is computed purely in a data-driven fashion. This proce-
dure considers a constraint metric θ that decides whether a
co-occurring relation should be included in the model. We
compute the conditional probability p(ai | aj) using the fol-
lowing equation:

p(ai | aj) =
p(ai ∩∗ aj)
p(aj)

(5)

Let a1 and a2 are two actions where a1 is an effect of
a2 which indicates that unless a2 is executed, a1 cannot be
executed. The support-based probability then is computed
where a1 will be the postcondition of a2 if p(a1 | a2) > θ
and a2 will be the precondition of a1. The ∩∗ in Equation 5
represents an ordered conjunction that considers the sequen-
tiality of a1 and a2 while computing the frequency of their
occurrence together.

Once we extract the pre-actions and post-actions for ev-
ery action in the data set, we represent the relationships in
the form of an Action Graph (AG) as our incomplete action
model (M) to generate shallow workflows. AG consists of
actions as nodes and each edge is a transition between two
actions ai and aj . The edge weight between any two nodes
ai and aj is the support-based probability p(ai, aj).

Running example: [data-driven probabilities]: In the plan
trace dataset, we compute the sequential probabilities for
any given action pairs. This results in generating a prece-
dence graph shown in Figure 2 for the “Quit Smoking” do-
main, where the sink node is the action quit with no subse-
quent effect.

Figure 2: Part of the directed graphG for theQuitSmoking
domain with quit smoke as the sink node.

3.6 Phase-6: Model Validator
We divide the set of plan traces D into training data, Dtr,
and testing data, Dte. By this step, we have the set of plan
traces represented in the lifted action format. This com-
mon lifted representation ensures that a given action uses
the same name in both Dtr and Dte. We use Dtr to build
the model M. Let T be the set of transitions present in M and



T
′

be the set of transitions in test dataset. Since M is used
to generate workflows, the goodness of this model should be
measured to trust the quality of these plans. To determine
goodness of M, we define a new metric called explainability
that can be computed as shown in Equation 6.

T
′′
= T ∩ T

′

Explainability =
|T ′′ |
|T ′ |

(6)

4 Evaluation Methodology

We evaluate the pipeline from two perspectives: 1) data
and approach employed to construct the incomplete action
model in terms of explainability 2) workflows generated by
the incomplete action model in terms of soundness and com-
pleteness. We evaluate the data utilized by the pipeline fol-
lowed by the extracted plans represented as shallow work-
flows. Although we have the incomplete action model in the
pre-action −→ action −→ post-action format (a sample of
these models extracted for the three domains is show in Ta-
ble 3), we are still in the process of attempting to convert and
refine this incomplete model to a PDDL-style model. This
attempt could be a valuable contribution to the automated
planning community (Srivastava and Kambhampati 2005).
Planning community can no longer depend on a fixed set of
domains for the International Planning Competition (IPC)
challenges but instead expand the domains to any real-world
scenarios.

Quit Smoking
(:action change(ability)
[:pre-action eat(gross) crave(succeed) dealt(reality)]
[:post-action set(goal) run(mile) quit(smoke)] )
Possible explanation: Someone is craving for success and is dealing with the reality
of eating gross food who wants to change his abilities that led that person to set some
goals, run miles and quit smoking.

Couch to 5K
(:action sign(race)
[:pre-action recommend(c25k) push(run) refer(program) ]
[:post-action begin(week) run(minute) cover(mile) know(battle) kept(pace) ] )
Possible explanation: A person was recommended the couch to 5K reddit forum and
was being pushed to run. So, he refers to a program and signs up for the race. After
this, he begins from the next week to run few minutes and cover few miles. The person
knows the battle but he kept the pace.

Wedding Planning
(:action hate(dress)
[:pre-action pick(dress) saw(dress) blame(problem) cost(much) prove(difficult)]
[:post-action kill(wed) find(dress) move(wed)])
Possible explanation: The person sees and picks her dress. It may cost a lot but starts
blaming someone for the problem and now hates the dress. The next steps could be to
kill the wedding at the moment, find a new dress and move the wedding date.

Table 3: Sample actions from the incomplete models ex-
tracted for the 3 domains automatically by this pipeline and
their possible explanations provided by the human subjects.

4.1 Evaluation-1 – Explainability
Prior to analyzing the pipeline, it is important to examine
whether the data we are utilizing to construct the incomplete
action models is consistent across all the experiential posts
shared online by the users. To evaluate this, we measure the
explainability of the incomplete action model by varying the
α value (clustering threshold). α decides on the amount of
redundancy to be removed from the posts. The smaller the
value of α, the larger the redundancy present in the data con-
sidered. We fix the size of the training data (Dtr) to 80% of
the entire set of plan traces and the remaining as the test data
set (Dte) and conduct experiments on all the three domains
separately. The dataset from each domain consists of a set of
plans that are aimed at achieving the primary goal of the cor-
responding domain. The pipeline first utilizes Dtr to build
the incomplete action model M and then use the test dataset
Dte to evaluate the explainability of M.

α Quit Smoking Couch to 5K Wed. Planning

2.50 65.66% 64.5% 73.39%
2.25 65.66% 64.59% 73.39%
2.0 68.41% 69.78% 77.7%
1.75 69.33% 70.67% 78.39%
1.50 80.58% 82.06% 84.68%
1.25 90.42% 89.43% 91.6%
1.0 89.31% 89.91% 91.04%

Table 4: Average explainability measured by Eq. 6 as we
vary α through 10-fold cross-validation

As shown in Table 4, the maximum explainability value
was reached at α = 1.25. It is expected that if the data and
the approach are correct, the explainability value should be
directly proportional to the value of α. This trend is clearly
visible in the results shown in Table 4. This trend also posi-
tions more confidence in building the best incomplete model
used to generate shallow workflows. Also, we focus on how
well can these incomplete domain models explain the newly
seen data to decide the consistency of goal-oriented experi-
ences shared by users. The results obtained through 10-fold
cross-validation show that M has the potential to obtain 90%
accuracy. The results display the strength of unstructured
data from social media platforms like Reddit could be em-
ployed to build incomplete models.

4.2 Evaluation-2 – Soundness & Completeness
Next, we examine the “goodness” of the incomplete ac-
tion models by evaluating the generated shallow workflows.
Each workflow is generated by representing the incom-
plete model as a graph and is the shortest path in this
graph from a given source node to the goal node. For ex-
ample, in Quit Smoking domain, the source node can be
start(smoke) and the goal node is quit(smoke). To iden-
tify the best path, we utilized the weight-based Djikstra’s
shortest path algorithm from the NetworkX (https://
networkx.github.io/) Python library. We rate each
plan on a binary-scale evaluating it’s soundness and com-
pleteness metrics.



Domain Soundness Completeness
Quit Smoking 42% 38%
Couch to 5K 66% 45%
Wedding Planning 36% 43%

Table 5: Soundness and Completeness as evaluated by the
human subjects. Note that higher the percentage values, the
better the workflows that are generated.

Soundness: is defined as whether a given shallow work-
flow is meaningful and can help achieve the goal.
Completeness: is defined as if a given shallow workflow
is missing any important actions to achieve the goal.

We recruited 10 human test subjects who evaluated the top-
5 workflows generated by M. We provide instructions to the
test subjects and ask them to rate the soundness and com-
pleteness of each workflow. Each subject evaluates all the
top-5 workflows from the three domains and the combined
statistics are shown in Table 5. Each percentage value in
this table is the average value of all the votes gathered by the
plans in a given domain.

The best plan among these 15 plans (combined all top-
5 plans from the 3 domains considered) is from the Couch
to 5K domain – inhale(nose)→ exhale(mouth)→ aid(loss)
→ transform(life) → outpaced(brain) → slow(pace) →
run(minutes). This shallow workflow was described by the
human subjects as “If you inhale through nose and exhale
from mouth (a powerful breathing pattern4) that will help
you relax and transforms by keeping your slow pace to run
the 5K in minutes.” Notice that these workflows are not par-
tially meaningful. However, the evaluation results showed
that they make sense to humans as shown by the results pre-
sented in Table 5. The table shows that the Couch to 5K do-
main has highest soundness and completeness values which
might be due to the fact that the number of original number
of actions are relatively lower that led to a model with less
redundancy. Another reason could be the workflows gen-
erated from this domain are more meaningful to the human
test subjects. With regard to completeness, test subjects ex-
pressed the difficulty of not being completely aware of the
domains and so by default assumed that there should be a
missing action in the plan.

5 Related Work
The work reported in this paper brings together work from
three communities that are quite far apart – traditional (clas-
sical) planning, social computing and Natural Language
Processing (NLP).

Automated Planning & AI: Classical planning tech-
niques have sought to mostly ignore domain acquisition and
maintenance issues in favor of search efficiency and plan
synthesis. Towards this goal, multiple works have focused
on learning the action models through inductive logic pro-
gramming, from sets of successful plan traces (Yang, Wu,
and Jiang 2007; Zhuo et al. 2010), improving partial mod-
els (Oates and Cohen 1996; Gil 1994), etc. Recent work

4https://goo.gl/BiKvGG

on model-lite planning (Kambhampati 2007; Yoon 2007;
Zhuo, Nguyen, and Kambhampati 2013) acknowledges that
learned models may be forever plagued by incompleteness
and laden with uncertainty, and plan synthesis techniques
themselves may have to change in order to accommodate
this reality. Other existing works (Addis and Borrajo 2011;
Lindsay et al. 2017; Tenorth, Nyga, and Beetz 2010; Waibel
et al. 2011) that includes literature from the field of robotics
attempts at learning action models from the web where they
consider plans recommended by websites like wikihow.com
for a given task. This work focuses on carefully construct-
ing well-curated complete domain models where as the work
proposed in this paper emphasizes on building incomplete
models that are efficient enough to perform automated plan-
ning tasks that include plan recognition and obtaining mean-
ingful plans.

Social Computing: On the other hand, work in the so-
cial media field puts a premium on the analysis of data,
but very little on complex decision-making that can build
on the knowledge embedded within that data (Kiciman and
Richardson 2015). Given the high level human engagement
with these platforms, researchers have sought to utilize the
data generated on them for various analyses that can help
understand and predict users’ behaviors (Golder and Macy
2011; Sarker et al. 2015; Paul and Dredze 2011). Building
on this theme of using human-generated data on social me-
dia, the crowd sourcing community realized that in addition
to using the inadvertent by-product of user participation on
social media, it could also directly utilize the “crowd” to
prepare plans for goal-oriented tasks (Law and Zhang 2011;
Manikonda et al. 2014). This work has gained traction in
recent years in part as a response to the unavailability of
good planning models for many real-world, everyday plan-
ning and scheduling tasks. Such “hybrid” intelligence sys-
tems utilize domain knowledge that is split between humans
and machines, with each party possessing complementary
information; unfortunately, these systems are still far from
being scalable and cost-effective.

NLP: There is another set of work (Harabagiu and Maio-
rano 2002; Collier 1998) from the natural language process-
ing (NLP) community which focus on extracting domain
templates. The templates extracted from this literature cap-
ture most important information of a particular domain and
they can be used across multiple instances of that domain
especially in the field of information extraction. For exam-
ple, the GISTexter summarization system considers seman-
tic relations from WordNet along with summary statistics
over an arbitrary document collection. This type of sum-
marization could be at a disadvantage if there is only one
instance of the domain as input as addressed by Filatova et.
al 2006. This direction of work is later extended to iden-
tify event schema using count-bases statistics and by build-
ing formal generative models (Chambers and Jurafsky 2008;
Chambers 2013). The main distinction of this line of re-
search from our work is two fold: (1) the model: our main
aim is to build shallow models where as, the existing liter-
ature aims at constructing full models; (2) the unstructured
natural language data on online social media platforms: our
proposed pipeline handles natural language with different



styles of language, where as the existing literature consid-
ers fairly structured text available online.

6 Conclusions and Future Work
To support sequential decision making, action models ex-
tracted from the unstructured data are very valuable. How-
ever, extracting these models from unstructured data is dif-
ficult. Towards exploring these challenges and to measure
the feasibility of building usable action models, this paper
proposes a novel six-phase pipeline. This pipeline takes as
input the unstructured web data and automatically gener-
ates the incomplete action model. Through evaluations, we
show the capability of utilizing shallow NLP techniques to
overcome the challenges posed by various entities and suc-
cessfully generate incomplete action models. We acknowl-
edge that the workflows generated by the incomplete action
models are shallow. However, the evaluations displayed the
power of experiential statuses shared by the users on online
social media platforms can be used to generate incomplete
action model. Also, the capability of these models to gen-
erate plans as workflows are tagged by human subjects as
sound to a certain extent.

As a future work, these incomplete action models can be
translated to PDDL-style models. In addition, hierarchical
representation of actions can be extracted in order to en-
hance the extracted models. We hope that this work inspires
the research community to utilize the potential of incomplete
action models to perform automated planning tasks. Also,
considering the wealth of information present on online
social media platforms especially the goal-oriented posts
shared publicly, we envision that further action models are
constructed towards supporting sequential decision making.
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