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Abstract

We present the novel task of understanding multi-sentence
entity-seeking questions (MSEQs) i.e, questions that may be
expressed in multiple sentences, and that expect one or more
entities as an answer. We formulate the problem of under-
standing MSEQs as a semantic labeling task over an open
representation that makes minimal assumptions about schema
or ontology specific semantic vocabulary. At the core of our
model, we use a BiDiLSTM (bi-directional LSTM) CRF and
to overcome the challenges of operating with low training
data, we supplement it by using hand-designed features, as
well as hard and soft constraints spanning multiple sentences.
We find that this results in a 6-7pt gain over a vanilla BiDiL-
STM CRF. We demonstrate the strengths of our work using
the novel task of answering real-world entity-seeking ques-
tions from the tourism domain. The use of our labels helps
answer 53% more questions with 42 % more accuracy as
compared to baselines.

Introduction

We introduce the novel task of understanding multi-sentence
questions. Specifically, we focus our attention on multi-
sentence entity-seeking questions (MSEQs) i.e., questions
that expect one or more entities as answer. Such questions
are commonly found in online forums, blog posts, discus-
sion boards etc and come from a variety of domains includ-
ing tourism, books and consumer products.

Figure 1 shows an example MSEQ from a tourism forum,
where the user is interested in finding a hotel that satisfies
some constraints and preferences; an answer to this question
is thus the name of a hotel (entity) which needs to satisfy
some properties such as being a ‘budget’ option. A prelim-
inary analysis of such entity-seeking questions from online
forums reveals that almost all of them contain multiple sen-
tences – they often elaborate on a user’s specific situation
before asking the actual question.

In order to understand and answer such a user question,
we convert the question into a machine representation con-
sisting of labels identifying the informative portions in a
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question. We are motivated by our work’s applicability to
a wide variety of domains and therefore choose not to re-
strict the representation to use a domain-specific vocabu-
lary. Instead, we design an open semantic representation, in-
spired in part by Open QA (Fader, Zettlemoyer, and Etzioni
2014), in which we explicitly annotate the answer (entity)
type; other answer attributes, while identified, are not fur-
ther categorized. Eg. in Figure 1 ‘place to stay’ is labeled as
entity.type while ‘budget’ is labeled as an entity.attr. We
also allow attributes of the user to be represented. Domain
specific annotations such as location for tourism questions
are permitted. Such labels are then be supplied to a down-
stream information retrieval (IR) or a QA component to di-
rectly present an answer entity.

We pose the task of understanding MSEQs as a se-
mantic labeling (shallow parsing)1 task where tokens from
the question are annotated with a semantic label from our
open representation. However, in contrast to related litera-
ture on semantic role labeling (Yang and Mitchell 2017),
slot filling tasks (Bapna et al. 2017) and query formula-
tion (Wang and Nyberg 2016; Vtyurina and Clarke 2016;
Nogueira and Cho 2017), semantic parsing of MSEQs raise
several novel challenges. MSEQs express a wide variety of
intents and requirements which span across multiple sen-
tences, requiring the model to capture within-sentence as
well as inter-sentence interactions effectively. In addition,
questions can be unnecessarily belabored requiring the sys-
tem to reason about what is important and what is not.
Lastly, we find that generating training data for parsing
MSEQs is hard due to the complex nature of the task, further
requiring the models to operate in low training data settings.

In order to address these challenges and label MSEQs, we
use a bi-directional LSTM CRF (BiDiLSTM CRF) (Huang,
Xu, and Yu 2015) and extend it in two ways: (i) We encode
knowledge by incorporating hand-designed features as well
as semantic constraints over the entire multi-sentence ques-
tion during end-to-end training. (ii) We use partially labeled
questions, that are easier to source, to improve training.

In summary, our paper makes the following contributions:

1. We present the novel task of understanding multi-sentence
entity-seeking questions (MSEQs). We define open se-

1We use the phrases ‘semantic labeling’ and ’semantic parsing’
interchangeably in this paper.



Figure 1: An entity-seeking MSEQ and annotated with our semantic labels

mantic labels, which minimize schema or ontology spe-
cific semantic vocabulary and can easily generalize across
domains. These semantic labels identify informative por-
tions of a question that can be used by a downstream an-
swering component.

2. The core of our model uses a BiDiLSTM CRF model. We
extend this by providing hand-designed features and us-
ing Constrained Conditional Model (CCM) (Chang, Rati-
nov, and Roth 2007) inference, which allows us to specify
within-sentence as well as inter-sentence (hard and soft)
constraints, encoding prior knowledge about the labeling
task.

3. We present detailed experiments on our models using the
tourism domain as an example. We also demonstrate how
crowd-sourced partially labeled questions can be effec-
tively used in our constraint based tagging framework to
help improve labeling accuracy. We find that our best
model achieves 7 pt improvement in F1 scores over a
baseline BiDiLSTM CRF.

4. We demonstrate the applicability of our semantic labels
in an end-QA task: the novel task of directly answer-
ing tourism-related MSEQs using a web based semi-
structured knowledge source. Our semantic labels help
formulate a more effective query to knowledge sources
and our system answers 53% more questions with 42 %
more accuracy as compared to baselines

Related Work

To the best of our knowledge, we are the first to explic-
itly address the task of understanding multi-sentence entity-
seeking questions and demonstrate its use in an answering
task.

Question Answering Systems

There are two common approaches for QA systems – joint
and pipelined, both with different advantages. The joint sys-
tems usually train an end-to-end neural architecture, with
a softmax over candidate answers (or spans over a given

passage) as the final layer (Iyyer et al. 2014; Rajpurkar
et al. 2016), while a pipelined approach (Fader, Zettle-
moyer, and Etzioni 2014; Berant and Liang 2014; Fader,
Zettlemoyer, and Etzioni 2013; Kwiatkowski et al. 2013;
Vtyurina and Clarke 2016; Wang and Nyberg 2016) divides
the task into two components – question processing (under-
standing) and querying the knowledge source. Our work fol-
lows the second approach.

In this paper, we return entity answers to multi-sentence
entity seeking questions. The problem of returning direct,
(non-document/passage) answers to questions from back-
ground knowledge sources has been studied, but primar-
ily for single sentence factoid-like questions (Fader, Zettle-
moyer, and Etzioni 2014; Berant and Liang 2014; Yin et al.
2015; Sun et al. 2015; Saha et al. 2016; Khot, Sabharwal,
and Clark 2017; Lukovnikov et al. 2017). Reading compre-
hension tasks (Rajpurkar et al. 2016; Trischler et al. 2016;
Joshi et al. 2017; Trivedi et al. 2017) require answers to be
generated from unstructured text also only return answers
for simple single-sentence questions.

Other works have considered multi-sentence questions,
but in different settings, such as the specialized setting
of answering multiple-choice SAT and science questions
(Seo et al. 2015; Clark et al. 2016; Khot, Sabharwal, and
Clark 2017; Guo et al. 2017), mathematical word prob-
lems (Liang et al. 2016), and textbook questions (Sachan,
Dubey, and Xing 2016). Such systems do not return en-
tity answers to questions. Community QA systems (Bog-
danova and Foster 2016; Shen et al. 2015; Qiu and Huang
2015; Tan, Xiang, and Zhou 2015) match questions with
user-provided answers, instead of entities from background
knowledge-source. IR-based systems (Vtyurina and Clarke
2016; Wang and Nyberg 2016) query the Web for open-
domain questions, but return long (1000 character) passages
as answers; they haven’t been developed for, or tested on
entity-seeking questions. These techniques that can han-
dle MSEQs (Vtyurina and Clarke 2016; Wang and Nyberg
2016) typically perform retrieval using keywords extracted
from questions; these do not “understand” the questions and
can’t answer many tourism questions, as our experiments



show. The more traditional solutions (e.g., semantic pars-
ing) that parse the questions deeply can process only single-
sentence questions (Fader, Zettlemoyer, and Etzioni 2014;
Berant and Liang 2014; Fader, Zettlemoyer, and Etzioni
2013; Kwiatkowski et al. 2013).

Finally, systems such as QANTA (Iyyer et al. 2014) also
answer complex multi-sentence questions but their methods
can only select answers from a small list of entities and also
require large amounts of training data with redundancy of
QA pairs. In contrast, the subset of Google Places we exper-
iment with has close to half a million entities.

We discuss literature on parsing (understanding) ques-
tions in the next section.

Question Parsing

QA systems use a variety of different intermediate seman-
tic representations. Most of them, including the rich body
of work in NLIDB and semantic parsing, parse single sen-
tence questions into a query based on the underlying on-
tology or DB schema and are often learned directly by
defining grammars, rules and templates (Zettlemoyer 2009;
Liang 2011; Kwiatkowski et al. 2013; Berant et al. 2013;
Yih et al. 2015; Sun et al. 2015; Saha et al. 2016; Reddy et al.
2016; Khot, Sabharwal, and Clark 2017; Cheng et al. 2017;
Lukovnikov et al. 2017). Work such as (Fader, Zettlemoyer,
and Etzioni 2014; Berant and Liang 2014) build open se-
mantic representations for single sentence questions, that are
not tied to a specific knowledge source or ontology. We fol-
low a similar approach and develop an open semantic rep-
resentation for multi-sentence entity seeking questions. Our
representation uses labels that help a downstream answering
component return entity answers.

Recent works build neural models that represent a ques-
tion as a continuous-valued vector (Bordes, Chopra, and We-
ston 2014; Bordes, Weston, and Usunier 2014; Xu et al.
2016; Chen et al. 2016; Zhang et al. 2016) but such meth-
ods require significant amounts of training data. Some sys-
tems rely on IR and do not construct explicit semantic rep-
resentations at all (Sun et al. 2015; Vtyurina and Clarke
2016); they rely on selecting keywords from the question
for querying and as shown in our experiments do not per-
form well for answering multi-sentence entity-seeking ques-
tions. Work such as that by (Nogueira and Cho 2017) uses
reinforcement learning to select query terms in a document
retrieval task and requires a large collection of document-
relevance judgments. Extending such an approach for our
task could be an interesting extension for future work.

We now summarize recent methods employed to generate
semantic representations of questions.

Neural Semantic Parsing

There is a large body of literature dealing with semantic
parsing of single sentences, especially for frames in Prop-
Bank and Framenet (Palmer, Gildea, and Kingsbury 2005;
Baker, Fillmore, and Lowe 1998). Most recently, methods
that use neural architectures for SRL (Semantic Role La-
beling) have been developed. For instance, work by (Zhou
and Xu 2015) uses a BiDiLSTM CRF for labeling sentences
with PropBank predicate argument structures, while work

by (He et al. 2017; 2018) relies on a BiDiLSTM with BIO-
encoding constraints during LSTM decoding. Other recent
work by tomemnlp2017 proposes a BiDiLSTM CRF model
that is further used in a graphical model that encodes SRL
structural constraints as factors. Work such as that by (Bapna
et al. 2017) uses a BiDiLSTM tagger for predicting task ori-
ented information slots from sentences. Our work uses sim-
ilar approaches for parsing MSEQs, but we note that such
systems cannot be directly used in our task due to their
model specific optimizations for their label space. However,
we adapt the label space of the recent Deep SRL system (He
et al. 2017) for our task and use its predicate tagger as a
baseline for evaluation.

Problem Statement

Given a multi-sentence entity seeking question, our goal is
to first parse and generate a semantic representation of the
question. These semantic labels identify informative por-
tions of a question that can be used by a downstream answer-
ing component. The semantic representation of the question
is then used to return an entity answer for the question using
a knowledge source.

Semantic Labels for MSEQs

As mentioned earlier, our question understanding compo-
nent parses an MSEQ into an open semantic representation.
Our choice of representation is motivated by two goals. First,
we wish to make minimal assumptions about the domain
of the QA task and therefore, minimize domain-specific se-
mantic vocabulary2. Second, we wish to identify only the
informative elements of a question, so that a robust down-
stream QA or IR system can meaningfully answer it. As a
first step towards a generic representation for an MSEQ, we
make the assumptions that a multi-sentence question is ask-
ing only one final question, and that the expected answer is
one or more entities. This precludes Boolean, comparison,
‘why’/‘how’, and multiple part questions

We have two labels associated with the entity being
sought: entity.type and entity.attr, to capture the type and the
attributes of the entity, respectively. We also include a label
user.attr to capture the properties of the user asking the ques-
tion. The semantic labels of entity.type and entity.attr are
generic and will be applicable to any domain. Other generic
labels to identify related entities (eg: in questions where
users ask for entities similar to a list of entities) could also
be defined. We also allow the possibility of incorporating ad-
ditional labels which are domain specific. For instance, for
the tourism domain, location could be important, so we can
include an additional label entity.location describing the
location of the answer entity.

Figure 1 illustrates the choice of our labels with an ex-
ample from the tourism domain. Here, the user is interested
in finding a ‘place to stay’ (entity.type) that satisfies some
properties such as ‘budget’ (entity.attr). The question in-
cludes some information about the user herself e.g., ‘will
not have a car’ which may become relevant for answering

2Our representation can easily be generalized to include
domain-specific semantic labels, if required.



the question. The phrase ‘San Francisco’ describes the loca-
tion of the entity and is labeled with a domain specific label
(entity.location).

MSEQ Semantic Parsing

We formulate the task of outputting the semantic represen-
tation for a user question as a sequence labeling problem.
There is a one to one correspondence between our token-
level label set and the semantic labels described in earlier.
We utilize a BiDiLSTM CRF (Huang, Xu, and Yu 2015) for
sequence labeling and as described previously, we extend the
model in order to address the challenges posed by MSEQs:
(a) First, we incorporate hand-engineered features especially
designed for our labeling task (b) Second, we make use of
a Constrained Conditional Model (CCM) (Chang, Ratinov,
and Roth 2007) to incorporate within-sentence as well as
inter-sentence constraints. These constraints act as a prior
and help ameliorate the problems posed by our low-data set-
ting. (c) Third, we use Amazon Mechanical Turk (AMT) to
obtain additional partially labeled data which we use in our
constraint driven framework.

Features

We incorporate a number of (domain-independent) features
into our BiDiLSTM CRF model where each unique feature
is represented as a one-hot vector and concatenated with the
word-vector representation of each token.

Our features are described as follows: (a) Lexical features
for capitalization, indicating numerals etc., token-level fea-
tures based on POS and NER (b) hand-designed entity.type
and entity.attr specific features. These include indica-
tors for guessing potential types, based on targets of WH
(what, where, which) words and certain verb classes; multi-
sentence features that are based on dependency parses of in-
dividual sentences that aid in attribute detection, e.g., for ev-
ery noun and adjective, an attribute indicator feature is on if
any of its ancestors is a potential type as indicated by type
feature; indicator features for descriptive phrases (Contrac-
tor, Mausam, and Singla 2016), such as adjective-noun pairs.
(c) For each token, we include cluster ids generated from
a clustering of word2vec vectors (Mikolov et al. 2013) run
over a large tourism corpus. (d) We also use the counts of a
token in the entire post, as a feature for that token (Vtyurina
and Clarke 2016).

Constraints

Since we label multiple-sentence questions, we need to
capture patterns spanning across sentences. One alternative
would be to model these patterns as features defined over
non-adjacent tokens (labels). But this can make the model-
ing quite complex. Instead, we model them as global con-
straints over the set of possible labels.

We design the following constraints: (i) type constraint
(hard): every question must have at least one entity.type
token, and (ii) attribute constraint (soft), which penalizes
absence of an entity.attr label in the sequence. (iii) a
soft constraint that prefers all entity.type tokens occur in

Figure 2: BiDi LSTM CCM for sequence labeling.

the same sentence. The last constraint helps reduce erro-
neous entity.type labels but allows the labeler to choose
entity.type-labeled tokens from multiple sentences only if
it is very confident. Thus, while the first two constraints are
directed towards improving recall, the last constraint helps
improve precision of entity.type labels

In order to use our constraints, we employ Constrained
Conditional Models (CCMs) for our task (Chang, Ratinov,
and Roth 2007) which use an alternate learning objective ex-
pressed as the difference between the original log-likelihood
and a constraint violation penalty:

X

i

wT�(x(i),y(i))�
X

i

X

k

⇢kdCk(x
(i),y(i)) (1)

Here, i indexes over all examples and k over all constraints.
x(i) is the ith sequence and y(i) its labeling. � and w are fea-
ture and weight vectors respectively. dCk and ⇢k denote the
violation score and weight associated with kth constraint.
The w parameters are learned analogous to a vanilla CRF
and computing ⇢ parameters resorts to counting. Hard con-
straints have an infinite weight. Inference in CCMs is for-
mulated as an Integer Linear Program (ILP); see Chang et
al.(2007) for details. The original CCM formulation was
in the context of regular CRFs (Lafferty, McCallum, and
Pereira 2001) and and we extend its use in a combined model
of BiDiLSTM CRF with CCM constraints that is trained
end-to-end (Figure 2).

Partially Labeled Data

Data Collection: In order to obtain a larger amount of la-
beled data for our task, we make use of crowd-sourcing
(Amazon Mechanical Turk). Since our labeling task can be
fairly complex, we divide our crowd task into multiple steps.
We first ask crowd to (i) filter out forum questions that are
not entity-seeking questions. For the questions that remain,
the crowd provides (ii) user.⇤ labels, and (iii) entity.⇤ la-
bels. Taking inspiration from (He, Lewis, and Zettlemoyer
2015), for each step, instead of directly asking for token la-
bels, we ask a series of indirect questions as described in the
next section that can help source high precision annotations.

We obtain two sets of labels (different workers) on each
question. However, due to the complex nature of the task we



type attr loc
Avg. token level agreement 47.98 37.78 68.56

Table 1: Agreement for entity labels on AMT

find that workers are not complete in their labeling and we
therefore only use token labels where both the set of work-
ers agreed on labels. Thus we are able to source annotations
with high precision, while recall can be low. Table 1 shows
token-level agreement statistics for labels collected over a
set of 400 MSEQs from the tourism domain. Some of the
disagreement arises from labeling errors due to complex na-
ture of the task. In other cases, the disagreement results from
their choosing one of the several possible correct answers.
E.g., in the phrase “good restaurant for dinner” one worker
labels entity.type =‘restaurant’, entity.attr =‘good’
and entity.attr =‘dinner’, while another worker simply
chooses the entire phrase as entity.type.

Training with partially labeled posts We devise a novel
method to use this partially labeled data, along with our
small training set of expert labeled data, to learn the param-
eters of our CCM model. We utilize a modified version of
Constraints driven learning (CODL) (Chang, Ratinov, and
Roth 2007) which uses a semi-supervised iterative weight
update algorithm, where the weights at each step are com-
puted using a combination of the models learned on the
labeled and the unlabeled set (Chang, Ratinov, and Roth
2007).

Given a dataset consisting of a few fully labeled as well
as unlabeled examples, the CoDL learning algorithm first
learns a model using only the labeled subset. This model is
then used to find labels (in a hard manner) for the unlabeled
examples while taking care of constraints. A new model is
then learned on this newly annotated set and is combined
with the model learned on the labeled set in a linear manner.
The parameter update can be described as:

(w(t+1), ⇢(t+1)) = �(w(0), ⇢(0)) + (1� �)Learn(U(t)) (2)

Here, t denotes the iteration number, U (t) denotes the un-
labeled examples and Learn is a function that learns the
parameters of the model. In our setting, Learn trains the
neural network via back-propagation. Instead of using un-
labeled examples in U (t) we utilize the partially labeled set
whose values have been filled in using parameters at itera-
tion t and, inference over the set involves predicting only the
missing labels. This is done using the ILP based formulation
described previously and � controls the relative importance
of the labeled and partial examples. To the best our knowl-
edge, we are the first to exploit partial supervision from a
crowd-sourcing platform in this manner.

Experimental Evaluation

The goal of our experimental evaluation was to analyze the
effectiveness of our proposed model for the task of under-
standing MSEQs. We next describe our dataset, evaluation
methodology and our results in detail.

Dataset

For our current evaluation, we used the following three se-
mantic labels: entity.type, entity.attr, entity.location.
We also used a default label other to mark any tokens not
matching any of the semantic labels.

We use 150 expert-annotated tourism forum questions
(9200 annotated tokens) as our labeled dataset and perform
leave-one out cross-validation. This set was labeled by two
experts, including one of the authors, with high agreement.
For experiments with partially labeled learning, we add 400
partially-annotated questions from crowd-sourced workers
to our training set. As described previously, each question is
annotated by two workers and we retain token labels marked
the same by two workers, while treating the other labels as
unknown. We still compute a leave one out cross-validation
on our original 150 expert-annotated questions (complete
crowd data is included in each training fold).

Methodology

Sequence-tagged tokens identify phrases for each seman-
tic label – so, instead of reporting metrics at the token
level, we compute a more meaningful joint metric over
tagged phrases. We define a matching-based metric that first
matches each extracted segment with the closest one in the
gold set, and then computes segment level precision us-
ing constituent tokens. Analogously, recall is computed by
matching each segment in gold set with the best one in ex-
tracted set. As an example, for Figure 1, if the system ex-
tracts “convenient to the majority” and “local budget” for
entity.attr then our matching-metric will compute preci-
sion as 0.75 (1.0 for “convenient to the majority” and 0.5 for
“local budget)” and recall as 0.45 (1.0 for “budget”, 0.0 for
“best” and 0.364 for “convenient to the majority ... like to
see”).

We use the Mallet toolkit3 for CRF implementation and
the GLPK ILP-based solver4 for CCM inference. In the
case of BiDiLSTM based CRF, the BiDiLSTM network at
each time step feeds into a linear chain CRF layer. The in-
put states in the LSTM are modeled using a 200 dimension
word vector representation of the token. These word vec-
tor representations were with pre-trained using the word2vec
model(Mikolov et al. 2013) on a large collection of 80, 000
tourism questions. For CoDL learning we set � to 0.9 as per
original authors’ recommendations.

Results

Table 2 reports the performance of our semantic labeler un-
der different configurations. We find that a BiDiLSTM CRF
(lower half of the table) approach outperforms a CRF sys-
tem (upper half of the table) in each comparable setting - for
instance, using a baseline vanilla CRF based system using
all features gives us an aggregate F1 of 50.8 while the the
performance of a BiDi LSTM CRF approach using features
is 56.2. As a baseline we use the predicate tagger from the
Deep SRL system (He et al. 2017) to utilize our label space
and we find that it performs similar to our CRF setup. Our

3http://mallet.cs.umass.edu/
4https://www.gnu.org/software/glpk/



Model F1 F1 F1 F1

(entity.type) (entity.attr) (entity.loc) (aggr)

Deep SRL (He et al. 2017) 48.4 47.8 53.2 49.8

CRF (all features) 51.4 45.3 55.7 50.8
CCM 59.6 50.0 56.1 55.2
CCM (with all crowd data) 55.1 42.2 46.7 48.0
PS CCM 58.5 50.6 60.3 56.5

BiDi LSTM CRF 53.3 47.6 52.1 51.0
BiDi LSTM CRF+Feat 58.4 48.1 62.0 56.2
BiDi LSTM CCM+Feat 59.4 49.8 62.3 57.2
PS BiDi LSTM CCM+Feat 62.9 50.4 61.5 58.3

Table 2: Sequence tagger F1 scores using CRF with all
features (feat), CCM with all features & constraints, and
partially-supervised CCM over partially labeled crowd data.
The second set of results mirror these settings using a bi-
directional LSTM CRF. Results are statistically significant
(paired t-test,p value<0.000124 for aggregate F1). Models
with “PS” as a prefix use partial supervision.

Algorithm Prec Recall F1

CRF (all features) 66.9 41.7 51.4
CCM (all features) 62.1 57.2 59.6

BiDI LSTM CRF with Features 54.1 63.6 58.4
BiDi LSTM CCM with Features 55.1 64.5 59.4

Table 3: (i) Precision and Recall of entity.type with and with-
out CCM inference.

best model combines a BiDiLSTM CRF with hand-designed
features, CCM constraints along with learning from partially
annotated crowd data. This model has nearly a 7 pt gain
over the baseline BiDiLSTM CRF model. Further, usage of
hand-curated features, within-sentence and cross-sentence
constraints as well as partial supervision, each help succes-
sively improve the results. Next, we study the effect of each
of these enhancements in detail.

Effect of features In an ablation study performed to learn
the incremental importance of each feature, we find that de-
scriptive phrases, and our hand-constructed multi-sentence
type and attribute indicators improve the performance of
each label by 2-3 points. Word2vec features help type detec-
tion because entity.type labels often occur in similar con-
texts, leading to informative vectors for typical type words.
Frequency of non stopword words in the multi-sentence post
are an indicator of the word’s relative importance, and the
feature also helps improves overall performance.

Effect of constraints A closer inspection of Table 2 re-
veals that the vanilla CRF configuration sees more benefit
in using our CCM constraints as compared to the BiDiL-
STM CRF based setup (4pt vs 1pt). To understand why, we
study the detailed precision-recall characteristics of individ-
ual labels; the results for entity.type are reported in Table
3. We find that the BiDiLSTM CRF based setup has signifi-
cantly higher recall than its equivalent vanilla CRF counter-
part while the opposite trend is observed for precision. As
a result, since two of the three constraints employed by us

in CCM are oriented towards improving recall5, we find that
they improve overall F1 more by finding tags that were oth-
erwise of lower probability (i.e. improving recall).

Effect of partial-supervision In order to further under-
stand the effect of partial-supervision, we trained a CCM
based model that makes use of all the crowd-sourced labels
for training, by adding conflicting labels for a question as
two independent training data points. As can be seen, us-
ing the entire noisy crowd-labeled sequences (row labeled
“CCM (with all crowd data)” in upper half of Table 2) hurts
the performance significantly resulting in an aggregate F1
of just 48.0 while the corresponding partially-supervised
CCM system trained using partially labeled data has an F1
of 56.5.
Overall: Our results demonstrate that the use of each
of hand-engineering features, within-sentence and inter-
sentence constraints and use of partially labeled data help
improve the accuracy of labeling MSEQs.

MSEQ-QA

We now demonstrate the usefulness of our MSEQ semantic
labels and tagging framework by enabling a QA end task
which returns entity answers for multi-sentence MSEQs. To
the best of our knowledge we are the first to attempt such a
QA task.

We use our sequence tagger described previously to gen-
erate the semantic labels of the questions. These semantic
labels and their targets are used to formulate a query to
the Google Places collection, which serves as our knowl-
edge source.6. The Google places collection contains details
about eateries, attractions, hotels and other points of inter-
ests from all over the world, along with reviews and ratings
from users. It exposes an end point that can be used to exe-
cute free text queries and it returns entities as results.

We convert the semantic-labels tagged phrases
into a Google Places query via the transformation:
“concat(entity.attr) entity.type in entity.location”.
Here, concat lists all attributes in a space-separated fashion.
Since some of the attributes may be negated in the original
question, we filter out these attributes and do not include it
as part of the query for Google Places.
Detection of Negations: We use a list of triggers that indi-
cate negation. We start with a manually curated set of seed
words, and expand it using synonym and antonym counter
fitted word vectors (Mrksic et al. 2016). The resulting set of
trigger words flag the presence of a negation in a sentence.
We also define the scope of a negation trigger as a token (or
a set of continuous tokens with the same label) labeled by
our sequence tagger that occur within a specified window of
the trigger word. Table reports the accuracy of our negation
rules as evaluated by an author. The ‘Gold’ columns denote
the performance when using gold semantic label mentions.
The ‘System’ columns are the performance when using la-
bels generated by our sequence tagger.

5Recall that we require at least one entity.type (hard constraint)
and prefer at least one entity.attr (soft constraint)

6https://developers.google.com/places/web-service/



Gold System

P R F1 P R F1

Negations 86 66 74.6 85 62 71.7

Table 4: Performance of negation detection using gold se-
quence labels, and system generated labels

System Acc@3 (%) MRR Recall (%)

WebQA 18.8 0.16 40
WebQA (manual) 40.2 0.37 31.2

MSEQ-QA 56.9 0.47 47.8

Table 5: QA task results using the Google Places web API
as knowledge source.

Baseline Since there are no baselines for this task, we
adapt and re-implement a recent complex QA system (called
WebQA) originally meant for finding appropriate Google re-
sults (documents) to questions posed in user forums (Vtyu-
rina and Clarke 2016). WebQA first short-lists a set of top 10
words in the question using a tf-idf based scheme computed
over the set of all questions. A supervised method is then
used to further, shortlist 3-4 words from that form the query.
For best performance, instead of using supervised learning
for further shortlisting keywords (as in the original paper), in
our implementation an expert chooses 3-4 best words man-
ually. This query on executed against the Google places col-
lection returns answer entities instead of documents.

We randomly select 300 new unseen questions (differ-
ent from the questions used in the previous section), from
a tourism forum website and manually remove 105 of those
that were not entity-seeking. The remaining 195 questions
forms our test set. Our annotators manually check each
entity-answer returned by the systems for correctness. Inter-
annotator agreement for relevance of answers measured on
1300+ entities from 100 questions was 0.79. Evaluating
whether an entity answer returned is correct is subjective
and time consuming. For each entity answer returned, anno-
tators need to manually query a web-search engine to eval-
uate whether an entity returned by the system adequately
matches the requirements of the user posting the question.
Given the subjective and time consuming nature of this task,
we believe 0.79 is an adequate level of agreement on entity
answers.

MSEQ-QA: Results Results: Table 5 reports Accu-
racy@3, which gives credit if any one of the top three an-
swers is a correct answer. We also report Mean Reciprocal
Rank (MRR). Both of these measures are computed only
on the subset of attempted questions (any answer returned).
Recall is computed as the percentage of questions answered
correctly within the top three answers over all questions. In
case the user question requires more than one entity type7,
we mark an answer correct as long as one of them is at-
tempted and answered correctly. Note that these answers are
ranked by Google Places based on relevance to the query.

7A question can ask for multiple things, eg., ‘museums’ as well
suggestions for “hotels”.

As can be seen, the use of our semantic labels (MSEQ-QA)
results in nearly 17 point higher accuracy with a 16 point
higher recall compared to WebQA (manual), because of a
more directed & effective query to Google Places collection.

Overall, our semantic labels based QA system (MSEQ-
QA) answers approximately 48% of the questions with an
accuracy of 57% for this challenging task of answering
MSEQs.

MSEQ-QA : Qualitative Study and Error Analysis Ta-
ble 6 presents some examples of questions answered by the
MSEQL based QA system. As can be seen our system sup-
ports a variety of question intents/entities and due to our
choice of an open semantic representation, we are not lim-
ited to specific entity types, entity instances, attributes or lo-
cations. For example, in Q1 the user is looking for “local
dinner suggestions” on Christmas eve, and the answer en-
tity returned by our system is to dine at the “St. Peter Stift-
skulinarium” in Salzburg, while in Q2 the user is looking for
recommendations for “SOM tours” (Sound of Music Tours).
Q3 is incorrect because the entity returned does not fulfill
the location constraints of being close to the “bazar” while
Q5 returns an incorrect entity type. Q4 is a complicated
question with strict location, budget & attribute constraints.
Error Analysis: We conducted a detailed error study on
105 of the test set questions and we find that approximately
58% of questions were not answered by our system due
to limitations of the knowledge source while approximately
42% of the recall loss in the system can be traced to errors
in the semantic labels.

Conclusion and Future Work

We have presented the novel task of understanding entity-
seeking multi-sentence questions. MSEQs are an important
class of questions, as they appear frequently on online fo-
rums. They expose novel challenges for semantic parsing as
they contain multiple sentences requiring cross-sentence in-
teractions and also need to be built in low data settings due
to challenges associated with sourcing training data. We de-
fine a set of open semantic labels that we use to formulate a
multi-sentence question parsing task.

Our solution consists of sequence labeling based on a
BiDiLSTM CRF model. We use hand-engineered features,
inter-sentence CCM constraints, and partially-supervised
training, enabling the use of crowdsourced incomplete anno-
tation. We find these methods results in a 7pt gain over base-
line BiDiLSTM CRFs. We further demonstrate the strength
of our work by applying the semantic labels towards a novel
end-QA task that returns entity answers for MSEQs from a
web API based unstructured knowledge source that outper-
forms baselines.

An error analysis on our test set suggests the need for a
deeper IR system that parses constructs from our semantic
representation to execute multiple sub-queries. As another
direction of work, we would like to train an end to end neural
system to solve our QA task. This would require generating
a large dataset of labeled QA pairs which could perhaps be
sourced semi-automatically using data available in tourism
QA forums.



No. Question Entity Type System Answer

1 My family and my brother’s family will be in Salzburg over Christmas 2015. We have arranged to do the Sleigh
Ride on Christmas day but are keen to do a local style Christmas Day dinner somewhere. Any suggestions?

Special Dinner
place

St. Peter Stiftskulinarium,
Sankt-Peter-Bezirk 14, 5020

Salzburg

2 Heading to Salzburg by car on Friday September 18th with my wife and her parents (70’s) and trying to make the
most of the one day. Thinking about a SOM tour, but not sure what the best tour is, not a big fan of huge groups or
buses, but would sacrifice for my Mother in Law (LOL). Also thinking about Old Town or the Salzburg Fortress.
Any suggestions? Where to park to have easy access as well as a great place for dinner.Thanks so much!

Tour
Bob’s Special Tours, Rudolfskai

38, 5020 Salzburg, Austria

3 I am planning to visit Agra for 2 days in mid Dec with my friends.My plan is to try some street food and do
some local shopping on day 1 and thus wish to stay in a good budget 3 star hotel (as I wont be spending much
time in the hotel) at walking distance from such street foodlocal shopping market.Then on the 2nd day, I want to
just relax and enjoy the hotel.(I have booked a premium category hotel, Radisson Blu for this day hoping for a
relaxed stay)Please suggest some good hotel or market around which I should book an hotel for my first day.

Hotel with location
constraints

Hotel Taj Plaza, Agra, Taj Ma-

hal East Gate, Near Hotel Oberoi

Amar Vilas, VIP Road, Shilpgram,

Agra, Uttar Pradesh 282001, India

4. Hi,I am looking for a good hotel in Shillong (preferably near Police bazar) which would offer free wifi, spa and
are okay with unmarried couples. My budget is 3k maximum. please suggest the best place to stay.

Hotel with loca-
tion and budget
constraints

Hotel Pegasus Crown, Ward’s

Lake Road, Police Bazar, Shillong,

Meghalaya 793001, India ;

Table 6: Some sample questions from our test set and the answers returned by our system. Answers in green are identified as
correct while those in red are incorrect.
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Abstract

We investigated specific question generation from a question
about a passage in a reading comprehension task. In contrast
to previous question reformulation work, our goal here is to
specify ambiguous question intent with the given passage.
In this new task, a system proposes several specific question
candidates so that users can choose the question that is clos-
est to their intent. For this, we propose an end-to-end neu-
ral network model that combines copy mechanisms with an
attentional encoder-decoder. It locates missing information
from the given passage to generate multiple specific ques-
tions. We also introduce a sentence compression method in
order to create a training corpus for our model from existing
reading comprehension datasets. Experimental results with
the SQuAD dataset demonstrated that our model generated
specific questions that can improve reading comprehension
accuracy.

Introduction
The importance of question answering has increased with
the development of various smart interactive devices such
as smart speakers. In the research field of question answer-
ing, reading comprehension, a technology to read a pas-
sage and then answer a question about it, has particularly
attracted the attention of many researchers due to its high
accuracy and broad range of applications. Recently, a vari-
ety of large-scale datasets for reading comprehension have
been released. For example, the Stanford Question Answer-
ing Dataset (SQuAD) is a set of Wikipedia articles and ques-
tions posed by crowdsourcing (Rajpurkar et al. 2016). Many
neural network-based reading comprehension systems such
as BiDAF (Seo et al. 2017) and QANet (Yu et al. 2018) have
been proposed and brought about significant progress to the
point that the reading comprehension performance is now
comparable to that of humans.

However, there are still many problems when it comes to
implementing this technology. In this study, we focused on
reading comprehension when given ambiguous questions.
There are many situations in which questioners will ask am-
biguous questions in the real world. Take an interaction be-
tween questioners and operators of a contact center as an

Copyright c� 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Passage: CBS provided digital streams of the game via 
CBSSports.com, and the CBS Sports apps on tablets, 
Windows 10, Xbox One and other digital media players 
(such as Chromecast and Roku). Due to Verizon 
Communications exclusivity, streaming on smartphones 
was only provided to Verizon Wireless customers via the 
NFL Mobile service. The ESPN Deportes Spanish 
broadcast was made available through WatchESPN. 

Question: What app did viewers use to watch the game 
on their smartphones? 
 Answer of worker #1: NFL Mobile service  
 Answer of worker #2: the CBS Sports apps
 Answer of worker #3: NFL

Specific Question #1: What app did viewers use to 
watch the game on their smartphones of Verizon 
Wireless? 
 Coressponding system answer: NFL Mobile service 

Specific Question #2: What app did viewers use to 
watch the game on their tablets?

 
Coressponding system answer:

 
CBS Sports apps

Figure 1: Specific question generation task. In this sample in
SQuAD, answers were not unanimous even among human
workers. Our goal is to generate questions that have specific
correlation with the given passage so that users can choose
the question that is closest to their intent.

example, where the questioner does not always ask the oper-
ator a specific question. The operator supplements the ques-
tion while predicting the intention of the questioner with
knowledge documents such as answer books or manuals and
queries the user to confirm it. Even in an automatic question
answering system utilizing reading comprehension, users do
not always input a specific question that the system can an-
swer because the users do not know about the knowledge
texts referred by the reading comprehension system. Thus,
we feel that a function to supplement the question, similar
to what is done by contact center operators, is necessary for
reading comprehension systems.

In this paper, we tackle a novel task called Specific Ques-

tion Generation (SQG; Fig. 1). SQG specifically revises the
input question and suggests several specific question (SQ)



candidates so that users are able to choose the SQ that is
closest to their intent and obtain a highly accurate answer
from the reading comprehension.

We also propose a Specific Question Generation Model

(SQGM) for facilitating this task. Our model is based on
an encoder-decoder model and uses two copy mechanisms
(question copy and passage copy). The key idea is that the
missing information in the user-input question is described
in the passage. The decoder with the copy mechanisms gen-
erates specific questions by locating the missing informa-
tion from the given passage (passage copy) while retaining
the main part of the input question (question copy). In addi-
tion, we create a training dataset from reading comprehen-
sion datasets by generating pseudo ambiguous questions by
means of sentence compression. Our main contributions are
as follows:
• We designed an end-to-end specific question generation

model based on a deep neural network that features an
encoder-decoder and two copy mechanisms.

• We proposed a method of creating a training corpus for
the model consisting of ambiguous and specific sentences
by means of sentence compression.

• We demonstrated with SQuAD that our model generated
specific questions that can improve the accuracy of the
pre-trained BiDAF model (Gardner et al. 2018).

Problem Statement
In this section, we state the specific question generation task
and provide definitions.
PROBLEM 1 (SPECIFIC QUESTION GENERATION: SQG).
When given a question and a passage, the system suggests
several specific question (SQ) candidates so that users can
choose the SQ that is closest to their intent.
Definition 1 (SPECIFIC QUESTION GENERATION MODEL:
SQGM). SQGM is a neural network model to realize SQG.
When a question and a passage are given, the model gener-
ates and outputs specific questions.
Definition 2. A question, q = {q1, ..., qJ}, is given a sen-
tence in natural language where q1, ..., qJ are tokenized
words represented by one-hot vectors.
Definition 3. A passage, x = {x1, ..., xT }, is a short part of
a document in natural language. In contains an answer to the
question and does not include any non-textual information
such as images.
Definition 4. A specific question (SQ), y = {y1, ..., yK}, is
a natural language sentence generated by the specific gener-
ation question model. It is a specified question based on the
content of the passage.

Method
The proposed specific question generation model, SQGM, is
based on an attentional encoder-decoder model (Bahdanau,
Cho, and Bengio 2015) and combines two copy mecha-
nisms (Cao et al. 2017) with the encoder-decoder model.

Our model consists of three layers (Fig. 2):
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Figure 2: Proposed specific question generation model
(SQGM).

1. The encoding layer maps all passage and question words
into a vector space by a pre-trained word embedding model
and encodes the temporal interactions between words.
2. The matching layer captures the interaction among
passage and question words and produces a sequence of
question-aware passage word vectors.
3. The decoding layer generates words in order to create
specific questions with an attentional RNN decoder and two
copy mechanisms.

Encoding layer
This layer first projects one-hot vectors (size: V ) x and q
into a v-dimensional continuous vector with a pre-trained
word embedding matrix We 2 Rv⇥V . The embedded vec-
tors are passed to a highway network (Srivastava, Greff, and
Schmidhuber 2015), and it outputs two sequences of vectors:
X 2 Rv⇥T and Q 2 Rv⇥J .

The passage and question vectors are then entered into re-
current neural networks (RNNs). We utilize a single-layer
GRU (Cho et al. 2014) that is shared by the question and the
passage. The GRU has both forward and backward direc-
tions (Bi-GRU) and concatenates the d-dimensional outputs
of the two GRUs. Finally, it obtains contextual sequence ma-
trix H 2 R2d⇥T from X and U 2 R2d⇥J from Q.

The decoding layer requires an initial state from the en-
coder. The initial state vector h0 2 R2d is created by a self-
attention in the question contextual sequence matrix U , as

h0 =
P

j<J ↵jUj , (1)

where ↵j = softmaxj(U>
J Uj) and U>

J denotes a transposed
final state vector of the question contextual sequence.



Matching layer
This layer identifies a correspondence relationship between
the passage and the question. A bi-directional attention flow
(BiDAF) (Seo et al. 2017) mechanism is utilized for this
layer. The BiDAF computes attentions in two directions to
fuse information from the passage to the question words as
well as from the question to the passage and creates new pas-
sage contextual vectors with a dependency on the question.

The BiDAF first computes a similarity matrix S 2 RT⇥J .
The similarity between the t-th passage word and the j-th
question word Stj is

Stj = w>
s [Ht;Uj ;Ht � Uj ], (2)

where ws 2 R6d are learnable parameters, [; ] denotes a vec-
tor concatenation across a row, and � is an element-wise
product. Next, we obtain a passage-to-question attention and
question-to-passage attention from the similarity matrix.

Passage-to-question attention signifies which question
words are most relevant to each passage word. The atten-
tion vector that denotes the t-th passage word Ǔt 2 R2d is
computed as follows:

Ǔt =
P

j atjUj , (3)

where at = softmaxj(St).
Question-to-passage attention signifies which passage

words have the closest similarity to one of the question
words. It obtains the passage contextual vector ȟ 2 R2d as
follows:

ȟ =
P

t btHt, (4)
where b = softmaxt(maxj(S)).

Finally, it obtains Ȟ 2 R2d⇥T by tiling the vector T times
across the columns.

Bi-directional attention computes G to obtain question-
aware vectors of each passage word, as

G = [H; Ǔ ;H � Ǔ ;H � Ȟ] 2 R8d⇥T . (5)
The matching layer also uses a single layer bi-GRU and

obtains M 2 R2d⇥T from G to capture the interaction
among passage words conditioned on the question.

Decoding layer
This layer outputs a specific question. Our decoder consists
of an RNN-based language model and passage and question
copy mechanisms.

Generative language modeling This layer uses a single-
layer GRU with an attention mechanism and a softmax layer
for language modeling.

Let y = {y1, ...} be the output word sequence of a specific
question. This generative model outputs a distribution over
a vocabulary of fixed-size Vg:

Pg(ys+1|ys, X,Q) = softmax(Wghs+1 + bg), (6)
where Wg 2 R2d⇥Vg and bg 2 RVg denote learnable param-
eters and hs 2 R2d is the s-th hidden state of the GRU. hs

is updated as follows:
hs+1  GRU(hs, ẑs), (7)

where ẑs is the input vector to the GRU.
This model obtains ẑs as follows. First, it takes the output

word of the decoder in the preceding step ys as input (the
first word is the beginning token<BOS >) and projects ys
into embedding vector es 2 Rv , as in the encoding layer.
Next, it utilizes an attention mechanism by using the hidden
states as a query. An attention query vector ĥs 2 R2d is
created from the embedding vector es and the hidden state
hs:

ĥs = f(Wd[es;hs] + bd). (8)
The model calculates passage attention ↵st 2 RT and ques-
tion attention �sj 2 RJ vectors based on the attention query
vector:

↵st = softmaxt(Mt · ĥs), (9)

�sj = softmaxj(Uj · ĥs). (10)
Finally, we calculate the s-th input vector of the GRU zs 2
Rv+4d as

ĉps =
P

t ↵stMt, (11)
ĉqs =

P
j �sjUj , (12)

ẑs = [es; ĉps; ĉqs], (13)

where Wd 2 R(v+2d)⇥2d and bd 2 R2d are learnable param-
eters and f denotes a ReLU function as an activation faction.

Copy mechanism Our model uses a copy mechanism
based on (Cao et al. 2017) to extract the most useful word for
specific questions from a passage or a question. This mecha-
nism utilizes the attention weights of the language model as
the occurrence probabilities of passage or question words.
Hence, the outputs of the coping decoder are calculated as
follows:

Pcp(ys+1|ys, X,Q) =
X

t

1l(ys+1 = Xt)↵(s+1)t, (14)

Pcq(ys+1|ys, X,Q) =
X

j

1l(ys+1 = Qj)�(s+1)j , (15)

where 1l(ys = Xt) denotes 1 if ys = Xt and otherwise 0.
In the same way, 1l(ys = Qj) denotes 1 if ys = Qj and
otherwise 0.

Weighted linear combination of generative language and
copy models Finally, the decoding layer outputs word oc-
currence probabilities P (ys+1|ys, X,Q) and decides the
output word ys+1 by referring to the maximum value ele-
ment of the probabilities,

P (ys+1|ys, X,Q) = �sPg(ys+1|ys, X,Q)

+ µsPcp(ys+1|ys, X,Q)

+ ⌫sPcq(ys+1|ys, X,Q),

(16)

where �, µ, and ⌫ are learnable weighting factors having
the constraints �, µ, ⌫ 2 [0, 1] and � + µ + ⌫ = 1. These
parameters are computed as

ẑ0s = Highway2(ẑs), (17)
�sk = softmax(Wcẑ

0
s + bc), (18)

�s=�s0, µs=�s1, ⌫s=�s2,



where Highway2() denotes a two-layer highway network
and Wc 2 R(v+4d)⇥3 and bc 2 R3 are learnable parame-
ters.

Model training
We compute the loss L by a negative log likelihood as

L = � 1
N

X

i

X

s

logP (y(i)
s+1|y

(i)
s, X

(i), Q(i)), (19)

where N is a size of a mini-batch and i is the index of the
sample in the mini-batch.

Creation of training corpus
Our model requires a training corpus that contains passages,
questions, and specific questions in order to optimize the
model parameters. However, creating such a training corpus
from scratch is costly.

We propose a method of creating a training corpus by
using existing reading comprehension datasets (such as
SQuAD) and applying sentence compression. We regard the
questions included in the dataset as specific questions. Then,
we create shorter questions from the specific questions by
means of sentence compression and train our model to gen-
erate the specific questions when it takes the passage and the
short question as inputs.

The sentence compression generates a shorter paraphrase
of a sentence. This is a standard NLP task and various
ways of using it have been proposed (Wang et al. 2017;
Hasegawa et al. 2017). In this work, we utilize an unsuper-
vised sentence compression method based on dependency
parsing and integer programming (IP). This method first
creates a parse tree by dependency parsing and identifies
trimmable nodes by IP. When given a sentence that has L
words, our sentence compression is formulated as follows:

maximize
ai2{0,1},1iL

P
iL wiai

subject to
P

iL ai  l (20)
aparent(i) � ai � 0 (1  i  L)

aargmax(wi) = 0

where ai is 1 if the i-th word is selected in the compressed
sentence and 0 otherwise, wi denotes the importance of the
i-th word, and l is a maximum length of a compressed sen-
tence. aparent(i) denotes the word of a parent node corre-
sponding to a child word wi on the dependency tree.

First, the constraint
P

iL ai  l controls the length of
the compressed sentence. We create compressed questions
while changing l to increase the amount of generated data.
Next, the constraint aparent(i)�ai � 0 forbids the selection
of a child node without also selecting its parent node. The
constraint aargmax(wi) = 0 is newly added into the general
sentence compression formulation. The general formulation
retains the words of the input sentence in accordance with
the word importance scores, while the goal of our sentence
compression is to create questions that lack important infor-
mation to answer. Thus, we remove the most important word
in the sentence compression.
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Figure 3: Overview of dataset for experiment.

The word importance is calculated on the basis of word
occurrences in the training corpus as wi = logF/F (wi),
where F (wi) denotes the word wi frequency and F is the
total number of times a word appears in the corpus.

Experiments
In this section, we describe the experiments used to eval-
uate our proposed method. We conducted two experiments
for the evaluation: a question restoration experiment and an
evaluation of the reading comprehension. First, we explain
the dataset and model configurations for the experiments.
Next, we describe the experiment configurations of both ex-
periments. Finally, we present the experiment results.

Dataset
We used the SQuAD 1.1 (Rajpurkar et al. 2016) and
NewsQA (Trischler et al. 2017) datasets. SQuAD is one
of the most basic reading comprehension datasets created
from Wikipedia articles. NewsQA is created from news arti-
cles and consists of shorter and less specific questions than
SQuAD. We prepared the following three types of input
questions for our specific question generation model.
1. Original questions (OQs) are original questions with no
processing.
2. Compressed questions (CQs) are short questions cre-
ated automatically from the original questions by the sen-
tence compression.
3. Abstracted questions (AQs) are short questions created
manually from the original questions. A worker made the
AQs as short as possible while retaining the question inten-
tion of the original. AQs were only created for the SQuAD
dataset.

Figure 3 shows an overview of the datasets. The statis-
tics of the datasets are listed in Table 1. We created the CQs
by sentence compression while changing the maximum sen-
tence length, l, from 3 to L� 2 (L is the length of the input
question). To create CQs, we used all of the original ques-
tions in the training set and used a maximum of three orig-
inal questions (randomly selected) for each passage in the
development set. The AQs were created from 350 original



Table 1: Reading comprehension datasets used in the ex-
periments. Note that N denotes the number of passages and
questions and L denotes the mean length (in tokens).

train dev
OQs CQs OQs CQs AQs

SQuAD
N. passages 18,896 18,896 2,067 2,067 278
N. questions 87,599 120,000 10,570 32,208 350
L. passage 142.8 142.8 144.5 144.5 140.8
L. question 13.7 7.9 13.3 7.7 6.6
NewsQA
N. passages 3,072 3,072 1,900 1,900 –
N. questions 10,510 69,959 3,000 16,569 –
L. passage 237.9 237.9 297.5 144.5 –
L. question 10.4 6.3 10.7 6.3 –

questions randomly selected from the SQuAD development
set. Examples of compressed and abstracted questions can
be found in the supplemental material.

Model configuration
Preprocessing We used the spaCy tokenizer1 for all model
training and experiments and all of the words are con-
verted to lowercase. Our model used pre-trained 300-d fast-
Text (Bojanowski et al. 2017) embeddings trained with full
Wikipedia articles and all of the passages and questions in
the training set of SQuAD.

Training process We used the same configuration for
all datasets. Models were trained with two GPUs (Quadro
P6000). Each GPU processed a minibatch of size 96. The
hidden size d was set to 128. The generative vocabulary
size in the decoder layer Vg was set to 5,000 (it covers over
90% of all of vocabularies for the questions in SQuAD). A
dropout (Srivastava et al. 2014) rate of 0.2 was used for in-
put layers, and 0.5 was used for the internal layers in high-
way networks. We used the Adam optimizer. The number of
epochs was 5 (for a total of 64,300 training steps). A beam
size of 5 was used for the beam search in the decoder.

Question restoration experiment
The question restoration experiment evaluates the quality
of specific question generation. In the experiments with
SQuAD and NewsQA, each model generated the best spe-
cific question (SQ) for each compressed question (CQ) or
abstracted question (AQ). We used original questions (OQs)
as ground-truths.

Comparison model We prepared five models for the ques-
tion restore experiments, including our proposed model
(proposed). We first created a model from the proposed
model that contains no copy mechanisms (w/o copy). Next,
we removed the copy mechanism from the passage (w/o
p copy) or the question (w/o q copy). Finally, we created
a model by removing the BiDAF mechanism (w/o BiDAF).

1https://spacy.io/

Table 2: Results of question restoration experiments in the
SQuAD dataset.

Model Precision Recall F1 Sim
CQs 1.00 0.586 0.715 0.758
: w/o copy 0.214 0.203 0.205 0.256
: w/o p copy 0.346 0.301 0.319 0.361
: w/o q copy 0.669 0.539 0.619 0.770
: w/o BiDAF 0.856 0.678 0.747 0.814

SQuAD : Proposed 0.824 0.718 0.758 0.834
AQs 1.00 0.626 0.754 0.794
: w/o copy 0.265 0.282 0.260 0.345
: w/o p copy 0.365 0.363 0.353 0.436
: w/o q copy 0.707 0.570 0.647 0.621
: w/o BiDAF 0.900 0.650 0.735 0.810
: Proposed 0.844 0.716 0.759 0.837
CQs 1.00 0.581 0.715 0.715
: w/o copy 0.281 0.231 0.250 0.232

NewsQA : w/o p copy 0.702 0.597 0.637 0.695
: w/o q copy 0.623 0.541 0.568 0.658
: w/o BiDAF 0.832 0.631 0.711 0.738
: Proposed 0.805 0.690 0.731 0.766

This model used an output of the encoding layer, H , instead
of the output of the matching layer, M .

Evaluation metrics We used the following metrics in the
question restoration experiment. Precision and Recall are
calculated between a generated SQ and the ground-truth
(original) question at the word-level. F1 score is the har-
monic average of the precision and recall. Semantic simi-
larity is a relevance score between SQ and OQ. It is cal-
culated by a cosine distance between two semantic vectors.
The vectors are encoded from questions by the universal sen-
tence encoder (Cer et al. 2018).

Results Table 2 shows the results on the SQuAD and
NewsQA datasets. The results of the CQs and AQs in the
’Model’ column denote the scores between the input and
original questions.

Our proposed model statistically significantly outper-
formed all comparative models for all the scores other than
precision (t-test; p < .01). Although our specific genera-
tion model was trained with compressed questions automat-
ically created by sentence compression, it also performed
well when questions abstracted by hand were given.

The results of ablation tests demonstrated the effective-
ness of both the question and passage copy mechanisms.
In particular, the passage copy mechanism strongly con-
tributed to the performance in the SQuAD dataset. SQuAD
contains questions that are longer and more specific than
those in NewsQA; thus, the passage copy mechanism could
learn from SQuAD correctly. Also, we confirmed that the
question copy mechanism contributed to the performance:
specifically, it was effective for retaining the main part of in-
put question intent. In fact, approximately 61% of the words
of specific questions generated were copied from the ques-
tions (21% of words were copied from the passages and 19%
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Figure 4: (a) Precision and (b) recall due to number of
missing words in the question restoration experiment on the
SQuAD dataset.

were generated). The model without the BiDAF mechanism
achieved the highest score in precision. This model did not
capture the interaction between a question and a passage,
and thus was less aggressive in specifying question intent
with the passage information than our model. Recall, F1,
and semantic similarity scores were more important to eval-
uate the capability of finding missing information in the in-
put question from the passage.

Figure 4 shows the precision and recall changes when
changing the number of missing words in sentence compres-
sion. We can see that our model restored original questions
accurately with the given passage even for strongly com-
pressed questions.

Reading comprehension experiment with specific
questions
In this experiment with the SQuAD dataset, we evaluated
the effectiveness of the specific questions generated by our
model for improving reading comprehension. We compared
the reading comprehension accuracies corresponding to the
specific questions (SQs) with those corresponding to the
original, compressed, and abstracted questions.

Reading comprehension model We used the AllenNLP
BiDAF model trained with SQuAD (Gardner et al. 2018),
which is available on the Web2.

Evaluation metrics We compared the answers from the
BiDAF for each question with the ground-truth answers
on the basis of three types of exact-match metrics, where
the exact-match measures the percentage of predictions that
match the ground-truth exactly. We used a beam search to
generate five specific questions (SQ1 to SQ5, in descend-
ing order of the occurrence probability in decoding). The
first metric, for evaluating the performance in the setting of
Problem 1, is Success@k, which is the percentage of times
that the answers from BiDAF for the input question and the
top-k SQs contained the ground-truths. The second one, for
evaluating the individual contribution of SQ, is the individ-
ual accuracy, which is the accuracy of the answers from
BiDAF for each rank of SQs. The third one is the individual
improvement, which is the individual accuracy when the
answers from BiDAF for the input question were wrong.

2http://allennlp.org/models

Results Table 3 shows the results when given the original
questions as input. Reading comprehension was improved
up to 7.6% by in Success@5. This result demonstrates that
users can choose the question that is closest to their intent
from SQs and obtain an accurate answer from the chosen
SQ. Interestingly, SQ1 was the best in the individual accu-
racy, while SQ4 was the best in the individual improvement.
This indicates that top SQs were semantically close to the
original intent and other SQs covered different intents.

When given the compressed questions as input, reading
comprehension was improved up to 22.4% in Success@5.
In this case, where input questions were highly ambiguous,
SQ1 was the best in both the individual accuracy and im-
provement metrics.

When given the abstracted questions as input, reading
comprehension was improved up to 14.4% in Success@5.
This result exhibits a similar tendency with the result when
the original questions were used as input. On the other hand,
the improvement scores, when the reading comprehension
model returned wrong answers for the input questions, were
higher compared to the original questions. We can see from
these results that our model improved the accuracy of read-
ing comprehension when given ambiguous questions.

Figure 5 shows an example of specific question genera-
tion. In this example, the passage describes the former and
new head coaches of the Denver Broncos, and the BiDAF
incorrectly answered the name of the former head coach for
the question “Who is the head coach of the broncos?”. We
can see that SQ4 and SQ5 specified the original question in-
tent from “head coach” to “new head coach” with the given
passage, and BiDAF can obtain the correct answer with the
SQs. We should note that our model generated paraphrases
of the input questions such as in SQ3, where the answer from
BiDAF for SQ3 was correct. The improvements in Table 3
include the results of such paraphrasing or grammatical er-
ror correction in addition to the question specifying.

Related work and discussion

Question reformulation Question reformulation has been
used to improve question answering accuracy. Recently,
Buck et al. proposed a reinforcement learning method
for reformulating questions to elicit the best possible an-
swers (Buck et al. 2018). Their method uses a black-box and
a fixed QA system that gives the target performance metric
and trains end-to-end neural networks to maximize answer
quality. Their method takes only a question as input to re-
form the question while retaining the original intent, while
our method takes a question and a passage as inputs to spec-
ify question intent with the passage.

Moreover, query reformulation techniques have been well
studied in conventional IR-based QA systems. The systems
have reformulated queries to enable their IR method to cover
many textual variants. Such reformulation is dependent on
the redundancy of the knowledge source (Brill, Dumais, and
Banko 2002; Lin 2007) and does not work well on reading
comprehension.



Table 3: Results of reading comprehension experiments with specific questions (SQs) generated from original questions (OQs)
in SQuAD.

OQs CQs AQs
Success@k Accuracy Improve Success@k Accuracy Improve Success@k Accuracy Improve

Input 0.645 0.645 – 0.347 0.347 – 0.445 0.445 –
SQ1 0.663 0.595 0.0520 0.482 0.389 0.207 0.501 0.455 0.108
SQ2 0.684 0.555 0.0811 0.519 0.374 0.194 0.542 0.422 0.134
SQ3 0.698 0.544 0.0869 0.541 0.363 0.189 0.571 0.402 0.134
SQ4 0.710 0.542 0.100 0.558 0.363 0.191 0.580 0.403 0.160
SQ5 0.721 0.522 0.0957 0.571 0.343 0.181 0.589 0.420 0.134
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Figure 5: An example of specific question generation. A part of the passage ‘(. . . )’ is omitted due to space. The passage,
ground-truth answers, and original question are from the SQuAD development set. The BiDAF used here is the implementation
of AllenNLP (Gardner et al. 2018).

Question generation Question generation is the reverse
task of reading comprehension and has potential for educa-
tional purposes and for providing question-answer pairs. Du,
Shao, and Cardie proposed a method for generating a natu-
ral question related to information in a sentence including
the answer (Du, Shao, and Cardie 2017). Duan et al. also
proposed a method of question generation and used it to im-
prove the answer sentence selection task (Duan et al. 2017).
Moreover, question generation from other media has been
studied, such as visual question generation (Mostafazadeh
et al. 2016; Jain, Lazebnik, and Schwing 2018) and ques-
tion generation from knowledge bases (Serban et al. 2016;
ElSahar, Gravier, and Laforest 2018). The specific question
generation task is different from this task in that a system is
given a question as input.

Question paraphrasing Question paraphrasing is a kind
of question reformulation. In a recent work by Dong et al., a
question and its paraphrases are fed into a paraphrase scor-
ing model and a QA model, and then the system decides the
answer by using a weighted voting with the scores (Dong
et al. 2017). General purpose methods and paraphrasing
datasets have been studied extensively and can be applied
to question paraphrasing (Gupta et al. 2018). The goal of
question paraphrasing is to generate sentences that convey
the same meaning using different wording, and so it cannot
be used to specify the intent of an ambiguous question.

Relevance feedback and query expansion Relevance
feedback and query expansion are conventional techniques
used in information retrieval (Manning, Raghavan, and
Schtze 2008). In relevance feedback, the system revises a
user query with the documents that the user explicitly or im-
plicitly marks as relevant. In contrast, in query expansion,
the system suggests additional query terms without user
feedback. Our specific question generation is more power-
ful in terms of understanding natural language without user
feedback and a large number of query logs.

Conclusion

In this study, we tackled a new task: specific question gen-
eration from a question about a passage in reading com-
prehension. In contrast to previous work, our work makes
it possible to specify the intent of an ambiguous question
with the given passage. We believe this idea is novel and
has a broad range of applications such as interactive ques-
tion answering in which users can choose the question that is
closest to their original intent. In this paper, we proposed an
end-to-end specific question generation model and a training
method for the model from existing reading comprehension
datasets. Experimental results with SQuAD demonstrated
promising results in generating specific questions that en-
able a pre-trained BiDAF model to find the correct answer.
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Abstract

Translating natural language to SQL queries for table-based
question answering is a challenging problem and has received
significant attention from the research community. In this
work, we extend a pointer-generator network and investigate
how query decoding order matters in semantic parsing for
SQL. Even though our model is a straightforward extension
of a general-purpose pointer-generator, it outperforms early
work for WikiSQL and remains competitive to concurrently
introduced, more complex models. Moreover, we provide a
deeper investigation of the potential “order-matters” problem
due to having multiple correct decoding paths, and investigate
the use of REINFORCE as well as a non-deterministic oracle
in this context. 1

Introduction
Semantic parsing, the task of converting Natural Language
(NL) utterances to their representation in a formal language,
is a fundamental problem in Natural Language Processing
(NLP) and has important applications in Question Answer-
ing (QA) over structured data and robot instruction.

In this work, we focus on QA over tabular data, which
attracted significant research efforts (Zhong et al. 2017;
Xu et al. 2017; Yu et al. 2018; Huang et al. 2018; Haug
et al. 2018; Wang et al. 2018a; 2018b; Shi et al. 2018;
Krishnamurthy et al. 2017; Iyyer et al. 2017; Pasupat and
Liang 2015). In this task, given a NL question and a table,
the system must generate a query that will retrieve the cor-
rect answers for the question from the given table.

The model we use in this paper is a straightforward exten-
sion of pointer-generators, and yet outperforms early work
and compares well against concurrently developed models.
Concretely, we add simple LSTM-based column encoders,
skip connections and constrained decoding, as elaborated
later in the paper.

In order to use sequence decoders for generating queries,
the queries must first be linearized to sequences which can
be used to train a sequence decoder. However, when trans-
lating NL questions to SQL queries, as in many semantic

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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parsing tasks, target queries can contain unordered elements,
which results in multiple valid decoding paths. The par-
ticular ordering of the unordered elements in the decoding
path used for supervision can affect the performance of the
trained SEQ2SEQ models. We provide a deeper investigation
of the potential “order-matters” problem in translating NL
to SQL that has been raised by previous work. In this con-
text, we also investigate training with a non-deterministic
oracle (Goldberg and Nivre 2012) as well as training with
REINFORCE, both of which explore different possible lin-
earizations of the target queries, and show that the use of a
non-deterministic oracle can be beneficial when the original
supervision sequences are ordered inconsistently.

In the following, we first introduce the problem, then de-
scribe our model and the training procedure, present an ex-
perimental analysis, and conclude with a comparison to re-
lated work.

Queries, Trees and Linearizations
As an illustration of table-based QA, consider the natural
language question

“How much L1 Cache can we get with an FSB speed of
800MHz and a clock speed of 1.0GHz?”

This question should be mapped to the following SQL query
SELECT L1 Cache
WHERE FSB Speed = 800 (Mhz)

AND Clock Speed = 1.0 (GHz)
which will be executed over a table listing processors, the
sizes of their caches, their clocks speeds etc. In the query
representation format we use, the example SQL query will
be represented as the following sequence of output tokens:
SELECT L1 Cache AGG0 WHERE COND
FSB Speed OP0 VAL 800 ENDVAL COND
Clock Speed OP0 VAL 1.0 ENDVAL ,

where AGG0 is a dummy “no aggregator” token that is used
to indicate that no real aggregator should be applied and OP0
is the = (equality) operator. Other aggregators, like SUM and
COUNT, and other operators, like < (less than) are also avail-
able.

As illustrated in Figure 1, the SQL query can also be rep-
resented as a tree where the root node has two children:
SELECT and WHERE. Note that the order of the two con-
ditions appearing in the WHERE clause is arbitrary and does



SELECT

QUERY

WHERE

L1_Cache COND COND

FSB_Speed = 800 Clock_Speed = 1.0

Figure 1: Example of a query tree. The blue arrows indicate
unordered children.

not have any impact on the meaning of the query or the ex-
ecution results. Trees containing such unordered nodes can
be linearized into a sequence in different, equally valid, ways
(”FSB Speed” first or ”Clock Speed” first in the example, as
illsustrated in Figure 2.). We refer to the linearization where
the original order as given in the data set is preserved as the
original linearization.

QUERY WHERE CONDCOND FSB_Speed = 800Clock_Speed = 1.0

QUERY WHERE COND CONDFSB_Speed = 800 Clock_Speed = 1.0

Figure 2: Two valid linearizations of the example query tree
in Figure 1.

Model
We start from a sequence-to-sequence model with attention
and extend the embedding and output layers to better suit the
task of QA over tabular data. In particular, we use on-the-
fly (Bahdanau et al. 2017) embeddings and output vectors
for column tokens and implement a pointer-based (Gu et al.
2016; See et al. 2017) mechanism for copying tokens from
the question. The resulting model is a Pointer-Generator (Gu
et al. 2016; See et al. 2017) with on-the-fly representations
for a subset of its vocabulary.

The Seq2Seq Model
The general architecture of our model follows the attention-
based sequence-to-sequence (SEQ2SEQ) architecture. The
following formally introduces the major parts of our
SEQ2SEQ model. Details about the embedding and the out-
put layers are further elaborated in later sections.

The SEQ2SEQ model consists of an encoder, a decoder,
and an attention mechanism.

Encoder We are given a question Q = [q0, q1, . . . , qN ]
consisting of NL tokens qi from the set VE (i.e., the encoder

vocabulary). The tokens are first passed through an embed-
ding layer that maps every token qi to its vector representa-
tion qi = WE · one hot(qi) where WE 2 R|VE |⇥demb

is a
learnable weight matrix and one hot(·) maps a token to its
one-hot vector.

Given the token embeddings, a bidirectional multi-
layered Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997) encoder produces the hidden state vec-
tors [h⇤

0,h⇤
1, . . . ,h⇤

N ] = BiLSTM([q0,q1, . . . ,qN ]).
The encoder also contains skip connections that add word

embeddings qi to the hidden states h⇤
i.

Decoder The decoder produces a sequence of output to-
kens st from an output vocabulary VD conditioned on the
input sequence Q. It is realized by a uni-directional multi-
layered LSTM. First, the previous output token st�1 is
mapped to its vector representation using the embedding
function EMB(·). The embeddings are fed to a BiLSTM-
based decoder and its output states are used to compute
the output probabilities over VD using the output function
OUT(·). EMB(·) and OUT(·) are described in the following
sections.

Attention We use attention (Bahdanau et al. 2014) to com-
pute the context vector ĥt, that is

a(t)i = hi · yt , (1)

↵(t)
i = softmax(a(t)0 , . . . , a(t)i , . . . , a(t)N )i , (2)

ĥt =
NX

i=0

↵(t)
i hi , (3)

where softmax(·)i denotes the i-ith element of the output of
the softmax function, yt is the output state of the decoder
and h1, . . . ,hN are the embedding vectors returned by the
encoder.

Embedding Function of the Decoder
The whole output vocabulary VD can be grouped in three
parts: (1) SQL tokens from VSQL, (2) column ids from VCOL,
and (3) input words from the encoder vocabulary VE , that is,
VD = VSQL [ VCOL [ VE . In the following paragraphs, we
describe how each of the three types of tokens is embedded
in the decoder.

SQL tokens: These are tokens which are used to repre-
sent the structure of the query, inherent to the formal tar-
get language of choice, such as SQL-specific tokens like
SELECT and WHERE. Since these tokens have a fixed,
example-independent meaning, they can be represented by
their respective embedding vectors shared across all exam-
ples. Thus, the tokens from VSQL are embedded based on
a learnable, randomly initialized embedding matrix W SQL

which is reused for all examples.

Column id tokens: These tokens are used to refer to spe-
cific columns in the table that the question is being asked
against.

Column names may consist of several words, which are
first embedded and then fed into a single-layer LSTM. The



final hidden state of the LSTM is taken as the embedding
vector representing the column. This approach for comput-
ing column representations is similar to other work that
encode external information to get better representations
for rare words (Bahdanau et al. 2017; Ling et al. 2015;
Hill et al. 2016).

Input words: To represent input words in the decoder we
reuse the vectors from the embedding matrix WE , which is
also used for encoding the question.

Output Layer of the Decoder
The output layer of the decoder takes the current context
ĥt and the hidden state yt of the decoder’s LSTM and pro-
duces probabilities over the output vocabulary VD. Proba-
bilities over SQL tokens and column id tokens are calcu-
lated based on a dedicated linear transformation, as opposed
to the probabilities over input words which rely on a pointer
mechanism that enables copying from the input question.

Generating scores for SQL tokens and column id tokens
For the SQL tokens (VSQL), the output scores are computed
by the linear transformation: o SQL = USQL · [yt, ĥt], where
USQL 2 R|VSQL|⇥dout

is a trainable matrix. For the column
id tokens (VCOL), we compute the output scores based on a
transformation matrix UCOL, holding dynamically computed
encodings of all column ids present in the table of the current
example. For every column id token, we encode the corre-
sponding column name using an LSTM, taking its final state
as a (preliminary) column name encoding u⇤, similarly to
what is done in the embedding function. By using skip con-
nections we compute the average of the word embeddings of
the tokens in the column name, ci for i = 1, . . . ,K, and add
them to the preliminary column name encoding u⇤ to obtain
the final encoding for the column id:

u = u⇤ +


0

1
K

PK
i ci

�
, (4)

where we pad the word embeddings with zeros to match the
dimensions of the encoding vector before adding.

The output scores for all column id tokens are then com-
puted by the linear transformation2: o COL = UCOL · [yt, ĥt].

Pointer-based copying from the input To enable our
model to copy tokens from the input question, we follow
a pointer-based (Gu et al. 2016; See et al. 2017) approach to
compute output scores over the words from the question. We
explore two different copying mechanism, a shared softmax
approach inspired Gu et al. (2016) and a point-or-generate
method similar to See et al. (2017). The two copying mech-
anisms are described in the following.

Point-or-generate: First, the concatenated output scores
for SQL and column id tokens are turned into probabilities

2Note that the skip connections in both the question encoder and
the column name encoder use padding such that the word embed-
dings are added to the same regions of [yt, ĥt] and u, respectively,
and thus are directly matched.

using a softmax

pGEN(St|st�1, . . . , s0, Q) = softmax([oSQL;o COL]) . (5)

Then we obtain the probabilities over the input vocabulary
VE based on the attention probabilities ↵(t)

i (Eq. 2) over the
question sequence Q = [q0, . . . , qi, . . . , qN ] . To obtain the
pointer probability for a token q in the question sequence we
sum over the attention probabilities corresponding to all the
positions of Q where q occurs, that is

pPTR(q|st�1, . . . , s0, Q) =
X

i:qi=q

↵(t)
i . (6)

The pointer probabilities for all input tokens q 2 VE that do
not occur in the question Q are set to 0.

Finally, the two distributions pGEN and pPTR are combined
into a mixture distribution:

p(St|st�1, . . . , s0, Q) = �pPTR(St|st�1, . . . , s0, Q) (7)

+ (1� �)pGEN(St|st�1, . . . , s0, Q) ,

where the scalar mixture weight � 2 [0, 1] is given by the
output of a two-layer feed-forward neural network, that gets
[yt, ĥt] as input.

Shared softmax: In this approach, we re-use the attention
scores a(t)i (Eq. 1) and obtain the output scores o E over the
tokens q 2 VE from the question as follows: for every token
q that occurs in the question sequence Q the output score is
given by the maximum attention score over all positions in
Q = [q0, . . . , qi, . . . , qN ] where q occurs, i.e. it is given by:

max
i:qi=q

ai , (8)

while the scores for all input tokens q 2 VE that do not occur
in the question Q are set to �1. The final output probabil-
ities are then computed based on a single softmax function
that takes the output scores of the whole output vocabulary
as input:

p(St|st�1, . . . , s0, Q) = softmax([oSQL;o COL;o E]) . (9)

Pretrained Embeddings and Rare Words
We initialize all NL embedding matrices3 using GloVe em-
beddings for words covered by GloVe (Pennington et al.
2014) and use randomly initialized vectors for the remain-
ing words. Whereas randomly initialized word embeddings
are trained together with the remaining model parameters,
we keep GloVe embeddings fixed, since finetuning them led
to worse results in our experiments.

We also replace rare words that do not occur in GloVe
with a rare word representation in all embedding matrices.

3WE simultaneously used for question word embedding in the
encoder and input word embedding in the embedding function of
the decoder, the embedding matrix WCT for words occurring in
column names used in the embedding function of the decoder, and
its analogue in the output function.



Coherence of decoded logical forms
The output sequences produced by a unconstrained decoder
can be syntactically incorrect and result in execution errors
or they can make mistakes against table semantics. We avoid
such mistakes by implementing a constrained decoder that
exploits task-specific syntactic and semantic rules4.

The grammar behind the produced sequences is simple
and the constraints can be implemented easily by keep-
ing track of the previous token and whether we are in the
SELECT or WHERE clause. In our example discussed ear-
lier (see Figure 1), after a COND token, only column id to-
kens (L1 Cache, FSB Speed, . . . ) can follow, and after a
column id token, only an operator token (OP1, OP2, . . . ) is
allowed if we are currently decoding the WHERE clause.

In addition to such syntactic rules, we take into account
the types of columns to restrict the set of aggregators and op-
erators that can follow a column id. In the case of WIKISQL,
there are two column types: text and float. Aggregators
like average and operators like greater than only apply on
float-typed columns and thus are not allowed after text
columns. We also enforce span consistency when copying
tokens, leaving only the choice of copying the next token
from the input or terminating copying, if the previous action
was a copy action.

Training
We train our models by maximizing the likelihood of a cor-
rect logical form given the natural language question. We ex-
periment with teacher forcing (TF) and a non-deterministic
oracle (Goldberg and Nivre 2012).

Teacher forcing takes the original linearizations of the
query trees (as provided in the dataset) and uses it both for
supervision and as input to the decoder. However, in the
presence of multiple correct decoding paths, teacher forc-
ing can suffer from suboptimal supervision order, as pointed
out by previous work on WIKISQL (Zhong et al. 2017;
Xu et al. 2017) and concurrently explored by (Shi et al.
2018).

Non-deterministic Oracle
Instead of forcing the model to follow the original decod-
ing sequence, a non-deterministic oracle enables the explo-
ration of alternative linearizations of the query tree and is an
adaptation of Goldberg and Nivre’s (2012) algorithm for a
dynamic oracle with spurious ambiguity (developed in the
context of dependency parsing). It is formally described in
Algorithm 1, which is invoked at every decoding step t to
get a token gt (used for supervision) and a token xt+1 (used
as input to the decoder in the next time step). Essentially, the
algorithm always picks the best-scored correct token for su-
pervision and uniformly samples one of the correct tokens to
be used as decoder input in the next time step, if the overall
best-scored token (over the whole output vocabulary) does
not belong to the correct ones. Thus, the oracle explores al-
ternative paths if the decoder would make a mistake in free-
running mode.

4We use these constraints during prediction only.

Algorithm 1 Non-deterministic oracle
1: function GETNEXTANDGOLD(pt, t, xt)
2: VNTt  get valid next(t, xt)
3: xt+1  argmaxVD pt
4: gt  argmaxVNTt

pt
5: if xt+1 /2 VNTt then
6: xt+1  random(VNTt)

7: return gt, xt+1

In the algorithm, pt is the decoder’s output distribution
over VD at time step t. The set of valid next tokens VNTt ⇢
VD, from which the correct tree can be reached, is returned
by the function get valid next(·). The query tree can
have nodes with either ordered or unordered children (for
example, children of the WHERE clause are unordered). If
we are currently decoding the children of a node with un-
ordered children, all the children that have not been decoded
yet are returned as VNTt. In other cases, VNTt contains the
next token according to the original sequence order.

REINFORCE
The presented oracle is similar to REINFORCE in that it
explores alternative paths to generate the same query. In
contrast to the oracle, REINFORCE samples the next token
(xt+1) according to the predictive distribution pt and then
uses the sampled sequence to compute gradients for policy
parameters:

rJ = E[r log(pt(xt+1))At] (10)

In Alg. 2, we adapt the oracle into an algorithm equivalent to
basic REINFORCE with episode reward At set to +1 if the
sampled sequence produces a correct query and 0 otherwise.

Algorithm 2 Our REINFORCE
1: function GETNEXTANDGOLD(pt, t, xt)
2: VNTt  get valid next(t, xt)
3: xt+1 ⇠ pt; xt+1 2 VNTt

4: gt  xt+1

5: return gt, xt+1

Evaluation
To evaluate our approach, we obtain the WIKISQL (Zhong
et al. 2017) dataset by following the instructions on the
WIKISQL website5. The dataset contains a total of 80654
examples. Each example provides a NL question, its SQL
equivalent and the table against which the SQL query should
be executed. The original training/dev/test splits of WIK-
ISQL use disjoint sets of tables with different schemas.

Experimental Setup
Evaluation: Similarly to previous work, we report (1) se-
quence match accuracy (AccLF), (2) query match accuracy

5http://github.com/salesforce/WikiSQL



(AccQM) and (3) query execution accuracy (AccEX). Note
that while AccLF accepts only the original linearizations of
the trees, AccQM and AccEX accept all orderings leading to
the same query.

Training details: After a hyperparameter search, we ob-
tained the best results by using two layers both in the en-
coder and decoder LSTMs, with every layer of size 600, and
embedding size of 300, and applying time-shared dropouts
on the inputs of the recurrent layers (dropout rate 0.2) and
recurrent connections (dropout rate 0.1). We trained using
Adam, with a learning rate of 0.001 and a batch size of 100,
a maximum of 50 epochs and early stopping. We also use
label smoothing with a mixture weight ✏ = 0.2, as described
in Szegedy et al. (2016).

We ran all reported experiments at least three times and
report the average of the computed metrics. While the vari-
ance of the metrics varies between settings, it generally stays
between 0.1 and 0.25 percent for AccQM.

Results
We present our results, compared to previous and concurrent
work in Table 1. Our method compares well against previous
work, achieving performance similar to Coarse2Fine (Dong
and Lapata 2018) and close to MQAN (McCann et al. 2018)
which have more complicated architectures. Approaches us-
ing execution-guided decoding (EG) show better perfor-
mance at the expense of access to table content and repeated
querying during decoding, and relies on the assumption that
the query should not return empty result sets. The concur-
rently developed oracle-based6 approach of Shi et al. (2018)
improves upon our investigation of the oracle using the
ANYCOL technique (see Related Work section).

In the following sections, we provide an ablation study,
an in-depth analysis of the influence of the linearization or-
der of query trees, as well as an error analysis. The analysis
reveals that the overall improvement in accuracy obtained
from using the oracle can be attributed to improved predic-
tion accuracy of WHERE clauses, which contain unordered
elements.

Ablation study Starting from the best variant of our model
(i.e. the shared softmax pointer-generator) and standard TF
based training, we want to investigate the role of different
model components and the different training approaches.

Table 2 presents the results of this ablation study. Without
constraints enforcing the coherence of the decoded logical
rule at test time, the results drop by 1.6% AccQM on the test
set. While also using the constraints during training doesn’t
deteriorate results much, it results in slower training.

Label smoothing (Szegedy et al. 2016) has a significant
impact on performance. Label smoothing relaxes the target
distribution and thus helps to reduce overfitting. While la-
bel smoothing improves the performance of both versions of
pointer-generators, it improves the shared softmax version

6We also investigated non-deterministic oracles in the preprint
of this work from May 2018 (https://openreview.net/
forum?id=HJMoLws2z).

by 2% test AccQM, as opposed to a slightly lower improve-
ment of 1.4% for point-or-generate.

Incorporating skip connections into the encoder and de-
coder of our model improved performance by 0.5% AccQM
on the test set.

Effect of ordering in supervision To investigate the in-
fluence of the ordering in the linearizations of queries, we
trained our model with teacher forcing and experimented
with (1) reversing the original order of conditions in the
WHERE clause and (2) training with target sequences where
we assigned a different random order to the conditions in ev-
ery trial. The results indicate that the order of conditions in
the linearization matters for the performance of TF based
training to a certain degree. Training with a randomly re-
assigned order of conditions in the WHERE clause results
in a 2.5% drop in query accuracy (AccQM) on the test set.
However, reversing the order of conditions does not affect
the results.

Furthermore, we trained our model with REINFORCE as
well as with the non-deterministic oracle. In both methods,
the originally provided order of the target sequence does not
matter. Using REINFORCE (indicated by “RL” in Table 3)
results in a 1.5% drop in AccQM on the test set. The oracle
as described in Alg. 1 results in an improvement of 0.6%
query accuracy on the test set. We can also see that AccLF
for the oracle is significantly lower compared to TF while
AccQM is on par with TF. Given that AccLF is sensitive to
the order of arbitrarily ordered clauses and AccQM is not,
this means that the oracle-trained models effectively learned
to use alternative paths.

Comparing the oracle to TF with arbitrarily reordered
conditions in the WHERE clause shows that training with
TF can suffer from supervision sequences that are not con-
sistently ordered. When training with the oracle, the order of
unordered nodes as provided in supervision sequences does
not matter. Thus, it can be beneficial (in this case by 3%
query accuracy) to use the oracle if the original linearization
is arbitrary and can not be made consistent.

Error analysis Table 4 shows accuracies of different parts
of the query over the development set of WIKISQL. The
main cause of a wrongly predicted SELECT clause is an er-
ror in the predicted aggregator, while the main cause of error
overall is the prediction of the WHERE clause.

Comparison of errors of models trained with TF versus
oracle reveals that oracle-trained models make fewer mis-
takes in the WHERE clause, showing a 1% improvement
(84.4% from 83.4%) in WHERE clause accuracy, which is
translated to the 0.8% (73.4% from 72.6%) improvement in
full query accuracy (AccQM) on the validation set.

We find no difference between the accuracies for the SE-
LECT clause between TF and oracle training settings. In
both cases, 68.7% of examples with wrongly predicted SE-
LECT clauses had an error in the predicted aggregator, and
36.5% had a wrongly selected column.

Related Work
Earlier work on semantic parsing relied on CCG and other
grammars (Zettlemoyer and Collins 2007; Berant et al.



Dev Accuracies (%) Test Accuracies (%)
AccLF AccQM AccEX AccLF AccQM AccEX

Seq2SQL (no RL) (Zhong et al. 2017) 48.2 – 58.1 47.4 – 57.1
Seq2SQL (RL) (Zhong et al. 2017) 49.5 – 60.8 48.3 – 59.4
Pointer-SQL (Wang et al. 2018a) 59.6 – 65.2 59.5 – 65.1
SQLNet (Xu et al. 2017) – 63.2 69.8 – 61.3 68.0
PT-MAML (Huang et al. 2018)* 63.1 – 68.3 62.8 – 68.0
TypeSQL (Yu et al. 2018)* – 68.0 74.5 – 66.7 73.5
STAMP (Sun et al. 2018)* 61.7 – 75.1 61.0 – 74.6
Coarse2Fine (Dong and Lapata 2018) – – – – 71.7 78.5
MQAN (McCann et al. 2018) – – – 72.4 – 80.4

(ours)
PtrGen-SQL (shared softmax) 70.2 72.6 79.0 69.9 72.1 78.4
PtrGen-SQL (point-or-generate) 70.0 72.4 78.5 69.7 71.7 78.0
PtrGen-SQL (shared softmax) + oracle 56.2 73.4 79.4 55.0 72.7 78.8

(EG-based or concurrent work)
Pointer-SQL + EG(5) (Wang et al. 2018b) 67.5 – 78.4 67.9 – 78.3
Coarse2Fine + EG(5) (Wang et al. 2018b) 76.0 – 84.0 75.4 – 83.8
IncSQL + oracle + ANYCOL (Shi et al. 2018) 49.9 – 84.0 49.9 – 83.7
IncSQL + oracle + ANYCOL + EG(5) (Shi et al. 2018) 51.3 – 87.2 51.1 – 87.1

Table 1: Evaluation results for our approach (middle section) and comparison with previously reported results (top part) and
concurrent work or EG-based systems (bottom part). Entries marked by * are trained and evaluated using a slightly different
version of the WikiSQL dataset. Some values in the table, indicated by “–”, could not be filled because the authors did not
report the metric or the metric was not applicable.

Dev Accs (%) Test Accs (%)
AccLF AccQM AccLF AccQM

PtrGen-SQL (shared softmax) 70.2 72.6 69.9 72.1

· no constraints 68.6 70.9 68.6 70.5
· using constraints during training 69.8 72.2 69.8 71.9
· no label smoothing 68.3 70.5 68.4 70.1
· no label smoothing (point-or-generate) 68.7 70.7 68.5 70.3
· no skip connections 69.6 72.0 69.4 71.6

Table 2: Performance of different variations of our approach.

2013). With the recent advances in recurrent neural networks
and attention (Bahdanau et al. 2014; See et al. 2017), neu-
ral translation based approaches for semantic parsing have
been developed (Dong and Lapata 2016; Liang et al. 2016;
Rabinovich et al. 2017).

Labels provided for supervision in semantic parsing
datasets can be given either as execution results or as an ex-
ecutable program (logical form). Training semantic parsers
on logical forms yields better results than having only the
execution results (Yih et al. 2016) but requires a more elab-
orate data collection scheme. Significant research effort has
been dedicated to train semantic parsers only with execu-
tion results. Using policy gradient methods (such as REIN-
FORCE) is a common strategy (Liang et al. 2016; Zhong et
al. 2017). Alternative methods (Krishnamurthy et al. 2017;
Iyyer et al. 2017; Guu et al. 2017) exist, which also maxi-
mize the likelihood of the execution results.

Related to the ordering issue, the work of Vinyals et
al. (2016) also investigates the effect of ordering in the lin-

earization of target structures with unordered elements. We
adapt the approach of Goldberg and Nivre (2012) that was
developed in the context of dependency parsing. Goldberg
and Nivre (2012) experiment with two versions of the dy-
namic oracle, one that handles spurious ambiguity, and one
that is also able to recover from incorrect actions after which
the gold tree can not be reached.

Similar to the WIKISQL dataset that we used in our ex-
periments are the ATIS (Dahl et al. 1994) and WIKITABLE-
QUESTIONS (Pasupat and Liang 2015) datasets, which also
focus on question answering over tables. In contrast to WIK-
ISQL however, both ATIS and WIKITABLEQUESTIONS
are significantly smaller and the latter does not provide log-
ical forms for supervision and thus requires training with
execution results as supervision (Neelakantan et al. 2016;
Haug et al. 2018; Krishnamurthy et al. 2017). SQA (Iyyer et
al. 2017) is a dataset derived from WIKITABLEQUESTIONS
and focuses on question answering in a dialogue context.

Previous work on WIKISQL (Zhong et al. 2017; Xu et



al. 2017; Huang et al. 2018; Yu et al. 2018; Wang et al.
2018a) generally incorporate both slot-filling and sequence
decoding, predicting the SELECT clause arguments with
separate slot-filling networks, and also include some form
of a pointing mechanism. Seq2SQL (Zhong et al. 2017)
proposes an augmented pointer network that also uses a
pointer but encodes the question, column names and SQL
tokens together, and completely relies on a pointer to gen-
erate the target sequence. To avoid the order-matters prob-
lem, SQLNet (Xu et al. 2017) proposes a sequence-to-set
model that makes a set inclusion prediction in order to avoid
decoding the conditions in any particular order. Both pre-
dict the SELECT clause arguments using separate special-
ized predictors. Zhong et al. (2017) also use Dong and La-
pata (2016)’s SEQ2SEQ model as a baseline, however, get
poor performance due to the lack of pointer and column
encoders. Yu et al. (2018) build upon SQLNet (Xu et al.
2017)’s slot filling approach, proposing several improve-
ments such as weight sharing between SQLNet’s subnet-
works, and incorporate precomputed type information for
question tokens in order to obtain a better question encod-
ing. Wang et al. (2018a) develop a model similar to ours;
they propose a SEQ2SEQ model with copy actions. Simi-
larly to Zhong et al. (2017), they encode the concatenation
of column names and the question. Similarly to our work,
they use a constrained decoder to generate SQL tokens or
copy column names or question words from the encoded
input sequence. In contrast to Wang et al. (2018a), we en-
code column names separately, and independently from the
question. Huang et al. (2018) experiment with meta-learning
(MAML), using Wang et al. (2018a)’s model. STAMP (Sun
et al. 2018) presents a “multi-channel” decoder that consid-
ers three types of tokens (SQL, column, cell), and mixes
the distributions for each type using coefficients produced
by a trainable subnetwork. Compared to STAMP, we do
not encode cells (we assume no knowledge of table con-
tents) and instead use a pointer to copy values of condi-
tions from the input. Coarse2Fine (Dong and Lapata 2018)
explores a middle ground between purely sequence and
tree decoding models (Alvarez-Melis and Jaakkola 2016;
Dong and Lapata 2016) and proposes a two-stage decod-
ing process, where first a template (sketch) of the query is
decoded and subsequently filled in.

Very recent and concurrent work on WIKISQL ex-
plores execution-guided (EG) decoding (Wang et al. 2018b)
and non-deterministic oracles (Shi et al. 2018). Execution-
guided decoding keeps a beam of partially decoded queries,

Dev Accs (%) Test Accs (%)
AccLF AccQM AccLF AccQM

Original order (TF) 70.2 72.6 69.9 72.1

· Reversed (TF) – 72.6 – 72.1
· Arbitrary (TF) – 70.4 – 69.6
· RL 59.9 71.4 59.1 70.6
· Oracle 56.2 73.4 55.0 72.7

Table 3: Results for different target tree linearizations.

TF oracle

Whole Query 72.6 73.4
· SELECT 85.5 85.5
· Aggregator 90.0 90.0
· Column 94.7 94.7
· WHERE 83.4 84.4

Table 4: Error Analysis: AccQM of different query parts on
the development set for TF and oracle-trained shared soft-
max models.

which are filtered based on the execution results, that is, a
partially encoded query is not taken further into account if
it can not be parsed, produces a runtime error, or returns no
results after execution. This requires multiple queries to be
executed against the database while decoding. In our work,
we try to avoid parsing and semantics-related runtime errors
more efficiently by using decoding constraints. We suspect
that a significant part of the improvement due to EG in de-
coding relies on the assumption that execution results should
not be empty. However, we believe this assumption does not
hold in general, due to the existence of queries for which
an empty set is the correct answer. IncSQL (Shi et al. 2018)
also uses EG decoding, as well as a non-deterministic ora-
cle extended with the ANYCOL token, which adds the op-
tion to produce a wildcard column token that matches any
column. During training, the wildcard column token is pro-
vided as an alternative to the true column token in the super-
vision sequence if it can be unambiguously resolved to the
true column using the condition value. IncSQL’s model goes
beyond ours by adding self- and cross-serial attention and a
final inter-column BiLSTM encoder. They also feed column
attention and question attention summaries as an input to the
decoder.

Conclusion
In this work we present a SEQ2SEQ model adapted to the
semantic parsing task of translating natural language ques-
tions to queries over tabular data. We investigated how the
ordering of supervision sequences during training affects
performance, concluding that the order of conditions in the
linearization of the query tree matters to a certain degree
for WIKISQL. In this context, we also evaluated the use
of REINFORCE and a non-deterministic oracle for train-
ing the neural network-based semantic parser. Our experi-
ments revealed that REINFORCE does not improve results
and the oracle provides a small improvement, which can
be attributed to improved decoding of the WHERE clause.
Furthermore, from the results we can conclude that training
with a non-deterministic oracle is advisable if the original
linearizations are inconsistently ordered.

Acknowledgement
We acknowledge the support of the European Union H2020
framework ITN projects WDAqua (grant no. 642795) and
Cleopatra (grant no. 812997).



References
Alvarez-Melis, D., and Jaakkola, T. S. 2016. Tree-structured
decoding with doubly-recurrent neural networks.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate. In
ICLR 2014.
Bahdanau, D.; Bosc, T.; Jastrzebski, S.; Grefenstette, E.;
Vincent, P.; and Bengio, Y. 2017. Learning to compute word
embeddings on the fly. arXiv preprint arXiv:1706.00286.
Berant, J.; Chou, A.; Frostig, R.; and Liang, P. 2013. Se-
mantic parsing on freebase from question-answer pairs. In
Proceedings of EMNLP 2013, 1533–1544.
Dahl, D. A.; Bates, M.; Brown, M.; Fisher, W.; Hunicke-
Smith, K.; Pallett, D.; Pao, C.; Rudnicky, A.; and Shriberg,
E. 1994. Expanding the Scope of the ATIS Task: The ATIS-
3 Corpus. In Proceedings of the Workshop on Human Lan-
guage Technology, HLT ’94, 43–48. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Dong, L., and Lapata, M. 2016. Language to logical form
with neural attention. In Proceedings of ACL 2016.
Dong, L., and Lapata, M. 2018. Coarse-to-fine decoding for
neural semantic parsing. arXiv preprint arXiv:1805.04793.
Goldberg, Y., and Nivre, J. 2012. A dynamic oracle for arc-
eager dependency parsing. Proceedings of COLING 2012.
Gu, J.; Lu, Z.; Li, H.; and Li, V. O. 2016. Incorporat-
ing copying mechanism in sequence-to-sequence learning.
arXiv preprint arXiv:1603.06393.
Guu, K.; Pasupat, P.; Liu, E.; and Liang, P. 2017. From
language to programs: Bridging reinforcement learning and
maximum marginal likelihood. In Proceedings of ACL 2017.
Haug, T.; Ganea, O.-E.; and Grnarova, P. 2018. Neu-
ral multi-step reasoning for question answering on semi-
structured tables. 611–617.
Hill, F.; Cho, K.; Korhonen, A.; and Bengio, Y. 2016.
Learning to understand phrases by embedding the dictio-
nary. Transactions of the Association of Computational Lin-
guistics.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput.
Huang, P.-S.; Wang, C.; Singh, R.; Yih, W.-t.; and He, X.
2018. Natural language to structured query generation via
meta-learning. arXiv preprint arXiv:1803.02400.
Iyyer, M.; Yih, W.-t.; and Chang, M.-W. 2017. Search-based
neural structured learning for sequential question answering.
In Proceedings of ACL 2017, volume 1, 1821–1831.
Krishnamurthy, J.; Dasigi, P.; and Gardner, M. 2017. Neural
semantic parsing with type constraints for semi-structured
tables. In Proceedings of EMNLP 2017.
Liang, C.; Berant, J.; Le, Q.; Forbus, K. D.; and Lao,
N. 2016. Neural symbolic machines: Learning semantic
parsers on freebase with weak supervision. arXiv preprint
arXiv:1611.00020.
Ling, W.; Luı́s, T.; Marujo, L.; Astudillo, R. F.; Amir, S.;
Dyer, C.; Black, A. W.; and Trancoso, I. 2015. Finding

function in form: Compositional character models for open
vocabulary word representation. In Proceedings of EMNLP
2015.
McCann, B.; Keskar, N. S.; Xiong, C.; and Socher, R. 2018.
The natural language decathlon: Multitask learning as ques-
tion answering. arXiv preprint arXiv:1806.08730.
Neelakantan, A.; Le, Q. V.; and Sutskever, I. 2016. Neu-
ral programmer: Inducing latent programs with gradient de-
scent. In ICLR 2016.
Pasupat, P., and Liang, P. 2015. Compositional se-
mantic parsing on semi-structured tables. arXiv preprint
arXiv:1508.00305.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In Proceedings of
EMNLP 2014, 1532–1543.
Rabinovich, M.; Stern, M.; and Klein, D. 2017. Abstract
syntax networks for code generation and semantic parsing.
In Proceedings of ACL 2017, volume 1, 1139–1149.
See, A.; Liu, P. J.; and Manning, C. D. 2017. Get to
the point: Summarization with pointer-generator networks.
arXiv preprint arXiv:1704.04368.
Shi, T.; Tatwawadi, K.; Chakrabarti, K.; Mao, Y.; Polozov,
O.; and Chen, W. 2018. Incsql: Training incremental text-
to-sql parsers with non-deterministic oracles. arXiv preprint
arXiv:1809.05054.
Sun, Y.; Tang, D.; Duan, N.; Ji, J.; Cao, G.; Feng, X.; Qin,
B.; Liu, T.; and Zhou, M. 2018. Semantic parsing with
syntax- and table-aware sql generation. In Proceedings of
ACL 2018.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In Proceedings of CVPR 2016, 2818–2826.
Vinyals, O.; Bengio, S.; and Kudlur, M. 2016. Order mat-
ters: Sequence to sequence for sets.
Wang, C.; Brockschmidt, M.; and Singh, R. 2018a. Pointing
out sql queries from text.
Wang, C.; Huang, P.-S.; Polozov, A.; Brockschmidt, M.; and
Singh, R. 2018b. Execution-guided neural program decod-
ing. arXiv preprint arXiv:1807.03100.
Xu, X.; Liu, C.; and Song, D. 2017. Sqlnet: Generating
structured queries from natural language without reinforce-
ment learning. arXiv preprint arXiv:1711.04436.
Yih, W.-t.; Richardson, M.; Meek, C.; Chang, M.-W.; and
Suh, J. 2016. The value of semantic parse labeling for
knowledge base question answering. In Proceedings of ACL
2016, volume 2, 201–206.
Yu, T.; Li, Z.; Zhang, Z.; Zhang, R.; and Radev, D. 2018.
Typesql: Knowledge-based type-aware neural text-to-sql
generation. arXiv preprint arXiv:1804.09769.
Zettlemoyer, L., and Collins, M. 2007. Online learning of
relaxed ccg grammars for parsing to logical form. In Pro-
ceedings of EMNLP-CoNLL 2007.
Zhong, V.; Xiong, C.; and Socher, R. 2017. Seq2sql: Gen-
erating structured queries from natural language using rein-
forcement learning. arXiv preprint arXiv:1709.00103.



TallyQA: Answering Complex Counting Questions

Manoj Acharya, Kushal Kafle, Christopher Kanan
Chester F. Carlson Center for Imaging Science

Rochester Institute of Technology
{ma7583, kk6055, kanan}@rit.edu

Abstract

Most counting questions in visual question answering (VQA)
datasets are simple and require no more than object detection.
Here, we study algorithms for complex counting questions
that involve relationships between objects, attribute identifi-
cation, reasoning, and more. To do this, we created TallyQA,
the world’s largest dataset for open-ended counting. We pro-
pose a new algorithm for counting that uses relation networks
with region proposals. Our method lets relation networks be
efficiently used with high-resolution imagery. It yields state-
of-the-art results compared to baseline and recent systems on
both TallyQA and the HowMany-QA benchmark.

Introduction
Open-ended counting systems take in a counting ques-
tion and an image to predict a whole number that an-
swers the question. While object recognition systems now
rival humans (He et al. 2016), today’s best open-ended
counting systems perform poorly (Kafle and Kanan 2017b;
Chattopadhyay et al. 2017). This could be due to an inability
to detect the correct objects or due to an inability to reason
about them. To address this, we distinguish between simple
and complex counting questions (see Fig. 1). Simple count-
ing questions only require object detection, e.g., “How many
dogs are there?” Complex questions require deeper analysis,
e.g., “How many dogs are eating?”

Open-ended counting is a special case of visual ques-
tion answering (VQA) (Antol et al. 2015; Malinowski and
Fritz 2014), in which the goal is to answer open-ended
questions about images. The best VQA systems pose it
as a classification problem where the answer is predicted
from convolutional visual features and the question (Kafle
and Kanan 2017a). While this succeeds for many question
types, it works poorly for counting (Kafle and Kanan 2017b;
Chattopadhyay et al. 2017). Recently, better results were
achieved by using region proposals generated by object de-
tection algorithms (Trott, Xiong, and Socher 2018; Zhang,
Hare, and Prügel-Bennett 2018). However, datasets mostly
contain simple counting questions, as shown in Table 1. Due
to their rarity, complex questions need to be analyzed sepa-
rately to determine if a model is capable of answering them.

This paper makes three major contributions:

Reprint from the AAAI-19 proceedings

Figure 1: Counting datasets consist mostly of simple ques-
tions (top) that can be answered solely using object detection.
We study complex counting questions (bottom) that require
more than object detection using our new TallyQA dataset.

1. We describe TallyQA, the largest open-ended counting
dataset. TallyQA is designed to study both simple ques-
tions that require only object detection and complex ques-
tions that demand more. It is now publicly available.

2. We propose the relational counting network (RCN), a new
algorithm for counting that infers relationships between
objects and background image regions. It is inspired by
relation networks, with modifications to handle a dynamic
number of image regions and to explicitly incorporate
background information.

3. We show that RCN surpasses state-of-the-art methods for



open-ended counting on both TallyQA and the HowMany-
QA benchmark.

Related Work
VQA Datasets & Counting
Popular VQA datasets contain a significant number of count-
ing questions, e.g., about 7% in COCO-QA (Ren, Kiros,
and Zemel 2015), 10% of VQA1 (Antol et al. 2015), 10%
of VQA2 (Goyal et al. 2017), and 10% of TDIUC (Kafle
and Kanan 2017b). There are also counting specific VQA
datasets. CountQA (Chattopadhyay et al. 2017) was created
by importing question-answer (QA) pairs from the validation
split of VQA1 and COCO-QA. This small dataset has only
2,287 test QA pairs. Recently, HowMany-QA (Trott, Xiong,
and Socher 2018) was created by importing QA pairs from
Visual Genome and VQA2, and it is considered the gold
standard for open-ended counting. As shown in Table 1, com-
plex questions are scarce in these datasets. Simple questions
can be solved using solely an object detection algorithm, so
they do not appropriately test a system’s ability to answer
arbitrary counting questions, including those requiring rea-
soning or attribute recognition. Our new dataset, TallyQA,
is designed to evaluate both simple and complex counting
questions, enabling these and other capabilities to be appro-
priately evaluated. Note that we have limited our discussion
to natural language VQA systems which pose different chal-
lenges compared to VQA on synthetic datasets, which are
often designed for specific purposes (Johnson et al. 2017;
Kafle et al. 2018; Zhang et al. 2016).

Algorithms for Open-Ended Counting
Open-ended counting systems take as input a “How many ...?”
question and an image and then output a count. This is a VQA
sub-problem. For counting, there are two general approaches.
The first involves inferring the count directly in an end-to-
end framework operating on high-level CNN features. The
second approach is to detect object bounding boxes or region
proposals, and then aggregate question relevant bounding
boxes. While there are many direct methods, over the past
year region-based schemes for open-ended counting have
been studied.

Direct Methods. State-of-the-art VQA systems train a clas-
sifier to predict the answer from the image and question. Typ-
ically, image features are encoded using a CNN that was
pre-trained on ImageNet, and questions are encoded using a
recurrent neural network (RNN). Many innovations involve
different ways of combining image and question features (Lu
et al. 2016; Fukui et al. 2016; Ben-younes et al. 2017;
Kafle and Kanan 2016), modular networks (Andreas et al.
2016), data-augmentation (Kafle, Yousefhussien, and Kanan
2017) among many others.

Direct methods perform poorly at counting for real-world
image datasets. In Kafle and Kanan (2017b), three state-
of-the-art VQA algorithms were compared to baselines on
TDIUC’s counting questions. The best performing method,
MCB, achieved 51% accuracy, which was only 6% better
than an image-blind (question-only) model. This was true

VQA2 TDIUC HowMany-QA TallyQA (Us)
Simple 78,455 148,719 68,956 211,430

Complex 34,799 16,043 37,400 76,477

Total 113,254 164,762 106,356 287,907

Table 1: The number of counting questions for previous VQA
datasets compared to TallyQA dataset.

even though most of TDIUC’s counting questions are simple.
This suggests these methods are primarily exploiting scene
and language priors. For VQA2, the best method (Teney et al.
2017) of the CVPR-2017 VQA Workshop challenge achieved
69% overall, but only 47% accuracy on number questions,
most of which are counting.

We hypothesize that the inability of VQA algorithms to
count is due to the way their architectures are designed. These
systems operate on image embeddings computed using a
CNN. Mean pooling and weighted mean pooling (attention)
operations may destroy information that can be used to deter-
mine how many objects of a particular type are present.

Counting Specific Systems. While counting has long been
studied for specific computer vision problems (Zhang et
al. 2015; Dalal and Triggs 2005; Wang and Wang 2011;
Ryan et al. 2009; Ren and Zemel 2017), only recently has
open-ended counting in natural scenes been studied. Chat-
topadhyay et al. (2017) studied open-ended counting in typi-
cal scenes, and they evaluated three counting-specific meth-
ods: DETECT, GLANCE, and SUBITIZE. DETECT is built
on top of an object detection algorithm, which was Fast R-
CNN (Girshick 2015) in their implementation. DETECT
works by finding the first noun in a question and then match-
ing it to the closest category the detection algorithm has been
trained for (e.g., COCO objects). GLANCE uses a shallow
multi-layer perceptron (MLP) to regress for specific object
counts from a CNN embedding, with the appropriate out-
put unit chosen based on the first noun. SUBITIZE involves
breaking the image into a grid, extracting image embeddings
from each grid location, aggregating information across grids
using an RNN, and then predicting the count for every class
in the dataset. Although none of these methods are capable of
handling complex questions, all of them outperformed MCB,
which was a state-of-the-art VQA model.

Recently, Trott, Xiong, and Socher (2018) and Zhang,
Hare, and Prügel-Bennett (2018) both created algorithms
for open-ended counting in natural scenes that are built on
top of object proposals generated by an object detection al-
gorithm trained on Visual Genome. Trott et al. created the
ILRC algorithm, which redefines counting as a sequential
object selection problem. ILRC uses reinforcement learning
to select the objects that need to be counted based on the
question. Zhang et al. created a method that uses object de-
tection and then constructs a graph of all detected objects
based on how they overlap. Edges in the graph are removed
based on several heuristics to ensure that duplicated objects
are only counted once.

Both Trott et al. and Zhang et al. operate on region propos-
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Figure 2: Histogram of answer counts for each of the three splits of TallyQA.

als and loosely based on the idea of filtering out irrelevant
boxes based on the question, i.e. selecting a subset of question
relevant region proposals. However, successfully determining
which boxes should be counted for a given question often
requires comparing it with other object proposals (required
for duplicate detection, comparative and positional reason-
ing, etc.), and the background (for modeling context, finding
relative size, etc.). Since neither of these algorithms performs
any relational or comparative reasoning between the boxes,
they may have an impaired ability to answer complex ques-
tions. Here, our RCN model applies relational reasoning to
object-object and object-background pairs, giving it a more
robust capability to answer complex and relational questions.
Indeed, our experiments show that RCN outperforms other
models on complex questions.

The TallyQA Dataset
Complex counting questions are rare in existing datasets.
This prompted us to create TallyQA. TallyQA’s test set is
split into two parts: Test-Simple for simple counting ques-
tions and Test-Complex for complex counting questions. We
gathered new complex questions using Amazon Mechani-
cal Turk (AMT), and imported both simple and complex
questions from other datasets. Table 1 shows the total num-
ber of questions in TallyQA compared to others, and it has
over twice as many complex questions. The number of ques-
tions in the train and test sets by source is given in Table 2.
Fig. 4 shows example images and questions. Test-Simple and
Test-Complex contain images from only Visual Genome, and
Train has images from COCO and Visual Genome.

Collecting New Complex Questions
To gather new complex questions, we developed targeted
AMT tasks that yielded 19,500 complex questions for 17,545
unique images. These tasks were designed to fight the biases
in earlier datasets, where simple counting questions were pre-
dominantly asked (Kafle and Kanan 2017a). TallyQA’s im-
ages are drawn from both COCO and Visual Genome, which
provides more variety than COCO alone. About 800 unique
annotators provided QA pairs. For all tasks, annotators were
not allowed to submit obviously simple questions, e.g., “How
many x?” and “How many x in the photo?” We manually
checked AMT questions to ensure they were complex, and
we removed poor quality questions.

Split Questions Images
Train 249,318 132,981

AMT 3,902 3,494
Imported 245,416 129,487

Test-Simple 22,991 18,411
AMT 0 0
Imported 22,991 18,411

Test-Complex 15,598 14,051
AMT 15,598 14,051
Imported 0 0

Table 2: Number of questions and images in TallyQA.

We endeavored to ensure non-zero complex questions were
difficult, e.g., “How many men are wearing glasses?” is not
difficult if all of the men in the image are wearing glasses.
To do this, annotators were told to ask questions in which
there were counter examples, e.g., to ask “How many men are
wearing glasses?” only if it had an answer greater than zero,
and the contrary question “How many men are not wearing
glasses?” had an answer greater than zero.

We created a separate task to generate hard complex ques-
tions with zero as the answer. Annotators were asked to make
questions about objects with attributes not observed in the
image, e.g., asking the question “How many dogs have spots?”
when there was a dog without spots in the image. Similar
examples were shown to annotators before annotation.

Importing Questions from Other Datasets
TallyQA also contains questions imported from VQA2
and Visual Genome. A similar approach was used to cre-
ate HowMany-QA (Trott, Xiong, and Socher 2018) and
TDIUC (Kafle and Kanan 2017b). We imported all ques-
tions beginning with the phrase “How many...” with answers
that were whole numbers between 0–15. Following Kafle and
Kanan (2017b), for VQA2, we required that 5 of the 10 anno-
tators give the same answer. Although these questions were
generated by humans, as seen in Table 1, most are simple.

We also imported synthetic counting questions from
TDIUC (Kafle and Kanan 2017b). These questions were gen-
erated for COCO images using its semantic annotations. The
creators used a variety of templates to introduce variation in



the questions and used heuristics to avoid answer ambiguity.
All template generated questions from TDIUC are simple.
In addition to templates, we used their method for making
“absurd” questions to create both simple and complex zero
count questions. To do this, we first find the objects absent
from an image based on its COCO annotations. Then, we
randomly sample the counting questions from the rest of the
dataset that ask about counting these objects.

Classifying Simple and Complex Questions
The Test-Complex dataset was made using only new, hu-
man vetted complex questions from AMT. Because simple
questions are common in existing datasets like VQA2, we
used imported questions to make Test-Simple. To do this, we
developed a classifier to determine if a question was simple.

Our simple-complex classifier is made from a set of lin-
guistic rules. First, any substrings such as “...in the photo?”
or “...in the image?” were removed from the question. Then,
we used SpaCy to do part of speech tagging on the remaining
substring. It was classified as simple if it had only one noun,
no adverbs, and no adjectives, otherwise it was deemed com-
plex. This will classify questions such as “How many dogs?”
as simple and “How many brown dogs?” as complex.

Every question classified as simple by our rules will be
correct (i.e., the false positive rate is zero), making it suit-
able for creating Test-Simple, but it may sometimes classify
simple questions as complex (i.e., the false negative rate is
non-zero). For example, the question “How many men are
wearing red hats to the left of the tree?” would be classified as
complex by our classifier. However, if there was only a single
person in the image then it is not truly a complex question,
despite the apparent complexity. These kinds of questions
are rare and our simple-complex classifier works robustly,
but it is possible that it will underestimate the number of
simple questions and overestimate the number of complex
when used to characterize a dataset. For this reason, we only
use human-vetted questions in TallyQA’s Test-Complex set.

Dataset Splits & Statistics
TallyQA is split into one training split (Train) and two test
splits: Test-Simple and Test-Complex. Using our simple-
complex classifier, Train was found to have 188,439 simple
and 60,879 complex questions. The number of questions in
each split is given in Table 2. The test splits are comprised
exclusively of Visual Genome imagery, and no images in the
test splits are used in training.

A New Framework for Complex Counting
Our RCN model, depicted in Fig. 3, is formulated as a modi-
fied relation network (RN) (Santoro et al. 2017) that can rea-
son about the nature of relationships between image regions.
RCN uses the question Q to guide its processing of a list of n
foreground region proposals, O = {o1, o2, . . . , on}, and m
background regions, B = {b1, b2, . . . , bm}, with oi 2 RK

and bj 2 RK . Formally, our RCN model is the combination
of two RN sub-networks, i.e.,

Count(O,B,Q) = h� (RN(O,O)� RN(O,B)) , (1)

where � denotes concatenation, RN(O,O) represents the
RN that infers the relationship between foreground regions,
RN(O,B) represents the RN responsible for inferring the
relationship between each foreground and background region,
and h� is a neural network with parameters � that predicts
the final count.

The RN for predicting the relationship between foreground
proposals in the context of question Q is given by

RN(O,O) = f�1

0

@
X

i,j

g✓1(oi, oj , sij , Q)

1

A , (2)

where f�1 and g✓1 are neural networks with parameters �1

and ✓1, respectively, that each output a vector, and the vec-
tor sij encodes spatial information about the i-th and j-th
proposals. Like the original RN model, the sum is computed
over all n2 pairwise combinations. Similarly, the RN for pre-
dicting the relationship of each proposal to the background is
given by,

RN(O,B) = f�2

0

@
X

i,j

g✓2(oi, bj , sij , Q)

1

A , (3)

where f�2 and g✓2 are neural networks with parameters �2

and ✓2, respectively, that output vectors. RCN has two major
innovations over the original RN approach.

The original RN used raw CNN feature map indices as re-
gions. This worked well for CLEVR, but this approach works
poorly for real-world VQA datasets that require processing at
higher resolutions (e.g., VQA2). RCN overcomes this prob-
lem by using region proposals. As input, the original RN
model used the d2 elements in a d⇥ d convolutional feature
map, which were each tagged with their spatial coordinates.
This means it computed d4 pairwise relationships. For re-
cent direct VQA methods, a CNN feature map is typically
14⇥ 14, meaning that 38,416 comparisons would be needed
per counting query. In contrast, RCN’s proposal generator
produces only 31.12 foreground regions and 16 background
patches per image, so only 31.122 + (31.12 ⇥ 16) = 1466
comparisons are made, on average. By using proposals, RCN
reduces the number of comparisons by a factor of 26 and
scales to real-world imagery, whereas the original RN model
used lower resolution imagery and was only evaluated on
CLEVR (Johnson et al. 2017), a synthetic dataset that has
simple geometric shapes and a plain background.

RCN’s second innovation is the explicit incorporation of
the background. For queries such as “How many dogs are
laying in the grass?” it is necessary to consider background
entities (stuff) that are ignored by object detection systems.
RCN uses m image background patches, and computes the
relationships of each region with each background patch,
enabling the background to be studied with relatively few
comparisons. In contrast, the original RN model did not ex-
plicitly deal with the background, but it was likely unneces-
sary due to the simple scenes in CLEVR. Explicitly modeling
the background can help answer complex counting questions,
which often involve attributes of background objects or rela-
tionships between objects and background entities.



Figure 3: Our RCN model computes the relationship between foreground regions as well as the relationships between the these
regions and the background to efficiently answer complex counting questions. In this example, the system needs to look at the
relationship of each giraffe to each other and with the water (background).

Internally, RCN uses the spatial relationship between re-
gions oi and oj to help predict the count. Using sij is crit-
ical to ensuring each object is counted only once during
prediction, and it enables RCN to learn to do non-maximal
suppression to cope with overlapping proposals. The spatial
relationship vector is given by

sij =


`i, `j , ⇠ij , IoUij ,

IoUij

Ai

,
IoUij

Aj

�
, (4)

where `i and `j encode the spatial information of each pro-
posal individually, Ai and Aj are the area of proposals, ⇠ij
is the dot product between each proposal’s CNN features
to model how visually similar they are, and IoUij is the
intersection over union between the two proposals. The vec-
tor `i =

⇥
xmin
W

, ymin

H
, xmax

W
, ymax

H
, xmax�xmin

W
, ymax�ymin

H

⇤
,

where (xmin, xmax) and (ymin, ymax) represent the top-left
and bottom-right corners of proposal i, and W and H are the
width and height of the image, respectively.

Training & Implementation Details
The question Q is embedded using a one layer GRU that
takes as input pre-trained 300-dimensional Glove vectors for
each word in the question (Pennington, Socher, and Manning
2014) and outputs a vector of 1024 dimension. The GRU
used in all models are regularized using a dropout of 0.3.

For foreground proposals, we use the boxes and CNN
features produced by Faster R-CNN (Ren et al. 2015) with

ResNet-101 as its backbone. The Faster R-CNN model is
trained to predict boxes in Visual Genome, which contain a
wide variety of objects and attributes. This approach for gen-
erating proposals was pioneered by Anderson et al. (2018),
and has since been used by multiple VQA systems.

For the background patches, we extract ResNet-152 fea-
tures from the entire image before the last pooling layer and
then apply average pooling over these features to reduce them
to a 4⇥ 4 grid. Each of these 2048-dimensional vectors rep-
resents a 112 ⇥ 112 pixel background region. In RCN, g✓
has three hidden layers and g� has one hidden layer, which
each consist of 1024 rectified linear units (ReLUs). The out-
puts of these networks are then concatenated and passed to
h� , which has one hidden layer with 1024 units and ReLU
activation. The softmax output layer treats counting as a clas-
sification task, and it is optimized using cross-entropy loss.
RCN is trained using the Adam optimizer with a learning
rate of 7e�4 and a batch size of 64 samples.

Experiments

In this section, we describe a series of experiments to eval-
uate the efficacy of multiple algorithms on both simple and
complex counting questions.



HowMany-QA TallyQA Test-Simple TallyQA Test-Complex
ACC RMSE ACC RMSE ACC RMSE

Guess-1 33.8 3.74 53.5 1.78 43.9 1.57
Guess-2 32.1 3.34 24.5 1.56 15.9 1.69
Q-Only 37.1 3.51 44.6 1.74 39.1 1.75
I-Only 37.3 3.49 46.1 1.71 26.4 1.69
Q+I 40.5 3.17 54.7 1.44 48.8 1.57
DETECT 43.3 3.66 50.6 2.08 15.0 4.52

MUTAN 45.5 2.93 56.5 1.51 49.1 1.59
Zhang et al. 54.7 2.59 70.5 1.15 50.9 1.58
IRLC 56.1 2.45 – – – –
RCN (Ours) 60.3 2.35 71.8 1.13 56.2 1.43

Table 3: Performance breakdown on TallyQA and Howmany-QA datasets using accuracy (%) and RMSE.

Models Evaluated
We compare RCN against two state-of-the-art models specif-
ically for open-ended counting: Zhang, Hare, and Prügel-
Bennett (2018) and IRLC (Trott, Xiong, and Socher 2018).
We also compare against MUTAN (Ben-younes et al. 2017),
one of best direct VQA methods. Lastly, we compare RCN
to six baseline counting models:

1. Guess-1: Answer 1 for all questions.
2. Guess-2: Answer 2 for all questions.
3. Q-Only: An image-blind MLP model with a hidden layer

of 1024 units that uses only the question. The question
features are obtained from the last hidden layer of the
same RNN architecture used by our RCN model.

4. I-Only: A question-blind MLP that has one hidden layer
with 1024 units.

5. Q+I: An MLP with 1024 hidden units that uses both image
and question features.

6. DETECT: DETECT is an upgraded version of the method
from (Chattopadhyay et al. 2017). The main difference
is that we use the more recent YOLOv2 (Redmon and
Farhadi 2017) method instead of Fast R-CNN. DETECT
extracts the first noun from the question. It then finds
the most semantically similar category that YOLOv2 was
trained on to that noun based on word similarity, and then
it outputs the total number of YOLOv2 boxes produced
for that category.

MUTAN, I-Only, and Q+I use ResNet-152 features. Q-Only,
I-Only, Q+I, MUTAN, Zhang et al. , and RCN all use cross-
entropy loss and treat counting as a classification problem.
Before evaluation, the output of all models was rounded to
the nearest whole number and constrained to be within the
range of values in the datasets.

Results
Results for all methods on HowMany-QA and both of
TallyQA’s test sets are given in Table 3. Following earlier
work (Chattopadhyay et al. 2017; Trott, Xiong, and Socher
2018; Zhang, Hare, and Prügel-Bennett 2018), we compute
both accuracy and RMSE. RMSE captures that larger errors
should be penalized more heavily.

HowMany-QA. HowMany-QA is made by combining
counting questions from VQA2 and Visual Genome, so good

Test-Simple Test-Complex
ACC RMSE ACC RMSE

RCN – No Background 69.4 1.18 51.8 1.50
RCN – Full 71.8 1.13 56.2 1.43

Table 4: Performance on TallyQA using accuracy (%) and
RMSE showing the advantage of using background relation-
ships compared to a version of RCN that omits them.

performance on it serves as a surrogate for good performance
on VQA2. HowMany-QA is the best-known dataset for open-
ended counting. RCN, IRLC, and Zhang et al. all use identi-
cal region proposals and CNN features.

RCN obtains the highest accuracy on HowMany-QA,
outperforming IRLC, which was the best-known result.
Zhang et al. achieves the third-highest accuracy. Kim, Jun,
and Zhang (2018) used the Zhang et al. method to answer
VQA2’s counting questions. Although they achieved only
third best overall in the CVPR 2018 VQA2 Workshop Chal-
lenge, they won for number questions.

TallyQA. Example outputs for TallyQA are shown in Fig. 4.
IRLC’s authors were unable to share code with us, so we
could not test IRLC on TallyQA. Zhang et al. uses the same
Faster R-CNN region proposals and CNN features as RCN.

For Test-Simple, RCN achieves the best accuracy, with
Zhang et al. performing only slightly worse. On Test-
Complex, RCN also achieves the highest accuracy. The next
best method is again Zhang et al. , but there is a greater gap
between the two models. This may be because Zhang et al.
does not have an explicit mechanism for relational reasoning
between objects and backgrounds, potentially impairing its
ability to identify duplicates and compare attributes from
different image regions.

Consistent with our claim that complex questions require
more than detection, DETECT is the worst performer on
Test-Complex. DETECT performs better on Test-Simple, but
there is still a large gap between it and RCN.

To study the importance of the object-background model,
we ran RCN without the RN(O,B) component. As seen in
Table 4, this hurts performance for both simple and complex
questions showing the value of the background model.



(a) How many giraffes are there?
GT: 2, DETECT: 2, Zhang:2, RCN: 2

(b) How many people are standing?
GT: 2, DETECT: 4, Zhang: 3, RCN: 2

(c) How many people in the front row?
GT: 8, DETECT: 22, Zhang: 6, RCN: 8

(d) How many chairs have a girl sitting on
them?

GT: 1, DETECT: 7, Zhang: 2, RCN: 1

(e) How many players are wearing red
uniforms?

GT: 3, DETECT: 11, Zhang: 4, RCN: 3

(f) How many strings does the instrument
to the left have?

GT: 4, DETECT: 3, Zhang: 1, RCN: 0

Figure 4: Example model outputs on TallyQA. While other models fail at positional reasoning questions (e.g. Fig. 5c), RCN can
infer an object’s relative position to other objects. Since RCN is based on region proposals, it struggles when proposals do not
align with question relevant objects (Fig. 5i).

Positional Reasoning Questions. Since RCN uses object-
based relational reasoning, we expect it to outperform other
methods for positional reasoning questions. To study this, we
filtered out positional reasoning questions from TallyQA’s
Test-Complex set using common qualifiers such as left, right,
top, up, bottom, near, on, in, and then we measured accuracy
for Zhang et al. and RCN. We found that RCN outperformed
Zhang et al. ’s model by 6.38% absolute for these questions,
which further demonstrates RCN’s efficacy.

Performance Without Location Features

To assess the impact of using the spatial location informa-
tion of each proposal, we conducted an experiment in which
we removed the location features sij given to RCN. For
HowMany-QA, removing location caused a 5.4% decrease
in accuracy (absolute). For TallyQA, it caused a decrease of
2.8% accuracy (absolute) for Test-Simple and 2.4% accuracy
(absolute) for Test-Complex.

Comparison with the Original RN

The original RN model uses raw CNN feature maps, rather
than region proposals. Running the original RN model on
HowMany-QA, it achieved 3.46 RMSE and about 20% less
accuracy (absolute) than RCN. RCN likely achieves better
performance due to its improved architecture and due to using
region proposals.

Visualizing RCN
To visualize RCN’s inference process, we modified Grad-
CAM (Selvaraju et al. 2017). Grad-CAM is a technique that,
for a given prediction, generates a coarse heat map based
on the gradient flow in the final convolutional layers. To
adapt Grad-CAM to RCN, it is necessary to derive scores for
each proposal. To do this, we first find the pairwise object-
background score score(oi, bj) using the gradient obtained
at layer g✓2 . We then assign a score to each proposal using
score(oi) = maxi,j score(oi, bj). Scores for all proposals
are then scaled from 0 to 1 and visualized on the original
image. Examples are shown in Fig. 5.

Discussion
RCN achieved state-of-the-art results across all of the
datasets, even outperforming Zhang et al. , which is the best
published result on VQA2’s counting questions, and IRLC,
which was the previous best result on HowMany-QA. The
same regions and visual features were used across RCN,
Zhang et al. , and IRLC, so the difference in performance
is not due to using superior visual features, which is a fre-
quent confound in many works. Our experiments showcased
that there is a large performance gap between the ability for
models to answer simple and complex questions. This gap
was especially large for RCN and the Zhang et al. method.
A likely reason is that more data is required for complex
questions to handle the full range of attributes and relations.



(a) How many people are wearing long
dresses?

(b) How many people are sitting on a
horse?

(c) How many people are wearing
glasses?

(d) How many people have a hat? (e) How many players are wearing red? (f) How many white cows are there?

(g) How many dogs are sleeping in the
image?

(h) How many street lights are to be
seen behind this man?

(i) How many of the planes are on the
ground?

Figure 5: Modified Grad-CAM visualizations show where RNC is looking to make predictions. The importance of each object
proposals is proportional to the color intensity of the bounding boxes.

We found that region based methods, such as RCN, IRLC,
and the Zhang et al. model have better results compared
to direct methods, e.g., MUTAN (Ben-younes et al. 2017).
However, all of these region based models, including ours,
are not based on actual nameable objects but object proposals,
which range from 10–100 in number for each image and can
consist of many non-object regions and overlapping boxes.
Intelligently pruning/refining of these proposals may improve
performance of these systems. We tried simple non-maximal
suppression to prune out the overlapping boxes for RCN,
but it did not improve performance. We believe this to be
due to the relational capacities of RCN which can learn to
ignore duplicate or similar boxes based on the features and
positions of the boxes more intelligently than off-the-shelf
non-maximal suppression.

Conclusions

In this paper, we distinguished between simple and com-
plex open-ended counting questions in VQA, where simple
questions could be correctly answered using object detection
alone. To do this, we created TallyQA, the world’s largest
dataset for open-ended counting using VQA, which will be
made publicly available. We also described the RCN frame-
work and showed that it can effectively answer both simple
and complex counting questions compared to baseline mod-
els and state-of-the-art approaches for open-ended counting.
RCN combines region proposals with relationship networks,
enabling them to be efficiently used with high-resolution im-
agery. We found that RCN worked especially well compared
to others on complex questions. Our work better defines the
issues with open-ended counting, and sets the stage for future
work on this problem.
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Abstract

Building a deep learning model for a Question-Answering
(QA) task requires a lot of human effort, it may need several
months to carefully tune various model architectures and find
a best one. Its even harder to find different excellent mod-
els for multiple datasets. Recent works show that the best
model structure is related to the dataset used, and one single
model cannot adapt to all tasks. In this paper, we propose an
automated Question-Answering framework, which could au-
tomatically adjust network architecture for multiple datasets.
Our framework is based on an innovative evolution algorithm,
which is stable and suitable for multiple dataset scenario. The
evolution algorithm for search combine prior knowledge into
initial population and use a performance estimator to avoid
inefficient mutation by predicting the performance of candi-
date model architecture. The prior knowledge used in initial
population could improve the final result of the evolution al-
gorithm. The performance estimator could quickly filter out
models with bad performance in population as the number
of trials increases, to speed up the convergence. Our frame-
work achieves 78.9 EM and 86.1 F1 on SQuAD 1.1, 69.9 EM
and 72.5 F1 on SQuAD 2.0. On NewsQA dataset, the found
model achieves 47.0 EM and 62.9 F1.

1. Introduction

Question-Answering (QA) is a key problem in the field of
artificial intelligence. It requires one to find the correct an-
swer for a given question from passages. In our work, we fo-
cus on the task of Reading Comprehension, where the ques-
tion is grounded on related documents or passages. Due to
the diversity of language expression and the complexity of
grammar, understanding the semantic of long passages and
queries has always been a difficult task. Recently, a large
number of deep learning models including BiDAF (Seo et
al. 2016), R-Net (Wang et al. 2017), FusionNet (Huang et
al. 2017) and QANet(Yu et al. 2018) are proposed by re-
searchers, and they do achieved good performance on cer-
tain datasets (e.g. SQuAD dataset(Rajpurkar et al. 2016)).

However, one single model cannot adapt to all the tasks.
For example, (Joshi et al. 2017) shows that a model that per-
forms well for SQuAD may fail to get outstanding result on
TriviaQA. Therefore, for different reading comprehension

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

datasets, different models may need to be designed, which
will take a lot of human effort and time.

In this work, we propose a new evolution algorithm based
method to build an automated Question-Answering frame-
work. Leveraging neural architecture search (NAS) and
transfer learning, we are able to design suitable model archi-
tectures for different reading comprehension tasks, requiring
significantly less time and human effort.

Most existing algorithms (Zoph and Le 2016; Zoph et al.
2017; Pham et al. 2018; Liu, Simonyan, and Yang 2018;
Tan et al. 2018) for neural architecture search, are opti-
mized for a predefined model with strong knowledge of do-
main experts. They focus on designing a directed acyclic
graph (DAG) as a cell structure for the model, and trans-
fer their knowledge between different tasks by sharing and
repeating same basic cell over and over again. However,
from the previous work(Seo et al. 2016; Wang et al. 2017;
Huang et al. 2017; Yu et al. 2018), most state-of-art models
in reading comprehension consists of a variety of complex
connections, and do not contain any largely repeated model
structure. Therefore it is almost impossible to design a pre-
defined global structure for reading comprehension models.

In addition, the existing methods like ENAS(Pham et al.
2018), based on reinforcement learning and using s deep
learning model as a controller, are not suitable for finding
model architectures for multiple datasets. Due to the insta-
bility of reinforcement learning(Mnih et al. 2015), differ-
ent datasets may require different hyper-parameters, which
means human intervention is actually necessary. So it’s hard
to apply these methods for various datasets.

We build a flexible framework to search for Reading
Comprehension models. We do not predefine any high-level
structure for the models. In other words, model architec-
tures can grow dynamically in our framework. Besides, our
method, which uses evolution algorithm, is insensitive to
hyper-parameters. It is very suitable for the scenario of mul-
tiple datasets.

Previous research work(Real et al. 2017; Jaderberg et al.
2017; Real et al. 2018) have shown that evolutionary algo-
rithm are feasible to find a neural network architecture for
image classification. Our method is also based on evolu-
tion algorithm. Compared to image recognition, the Reading
Comprehension task is very different. The models in Read-
ing Comprehension usually need to use Recurrent Neural



Networks(RNN) layers to encode the semantics and atten-
tion layers to compute the relationship between query and
document, so the models suitable for Reading Comprehen-
sion are more complex and have longer training time. This
means the search time of evolution might be very long.

In order to solve this problem, we propose two main ideas.
First, the models used to initialize population in our evolu-
tion algorithm come from the state-of-art models and diverse
stochastic models mutated from those models. In traditional
evolution algorithms(Real et al. 2017), a large number of
experiments in the early stages are needed to explore and
get a better direction of mutation, which is very inefficient.
Searching from the state-of-art models could introduce hu-
man knowledge into the search progress and improve the
final result in limited time, which could be concluded from
our experiments. Second, we use a performance estimator
to estimate the performance of candidate models and try to
model the relationship between performance and model ar-
chitectures. The concept of using neural network as perfor-
mance predictor has been proposed in Peephole (Deng, Yan,
and Lin 2017). When performing the next mutation, the per-
formance estimator will be used to evaluate the performance
of several different possible mutated models and our frame-
work could pick best candidate to train. This way, we can
avoid inefficient random mutation, and speed up the search
progress.

Here is the summarization of our contributions in the pro-
posed framework:
• We build an automated Question-Answering framework

based on innovative evolution algorithm. Its a flexible
framework and can automatically adapt to different Read-
ing Comprehension datasets and produce competitive re-
sults.

• We propose an improvement based on naive evolution al-
gorithm(Real et al. 2017), which is initializing population
from the state-of-art models. This can improve the perfor-
mance of the found model.

• We use a CNN-based performance predictor to estimate
the performance of candidate mutations, which is a more
efficient alternative to naive random mutation. This can
accelerate the search progress and speed up its conver-
gence.

2. Related Work

Our work is highly related to neural architecture search
(NAS) and Reading Comprehension. Here we will summa-
rize previous work in the two fields.

2.1 Neural Architecture Search.

NAS(Zoph and Le 2016) uses a RNN controller to discover
neural network architectures by searching for an optimal
graph to maximize the expected accuracy of the generated
architectures on a validation set. NAS takes a lot of time for
getting a single model. Besides, ENAS(Pham et al. 2018)
speeds up the search progress by sharing parameters among
the models being searched. (Cai et al. 2018) use Net2Net
transfer (Chen, Goodfellow, and Shlens 2015) to speed up
the search when updating the network structure.

But these methods are not suitable for the multiple
datasets scenario in reading comprehension for two rea-
sons. First, the methods based on reinforcement learn-
ing or deep learning models, are very sensitive with their
hyper-parameters and thus aren’t) suitable for the multiple
dataset scenario. Second, unlike image recognition, known
Question-Answering models are very complex. Most com-
petitive QA models do not contains a large number of re-
peated basic blocks similar to ResNet (He et al. 2016a).
Therefore, it’s impossible to find a cell structure suitable
for every dataset. Our framework is inspired by(Real et al.
2017), which proposes a paralleled evolution algorithm, by
randomly picks two models from the population and ran-
domly mutates the better one. But there are two drawbacks
in original evolution. One is random mutation, which is in-
effective and uncontrollable. The other is that the evolution
algorithm consumes a large amount of resources to filter the
weak individual compared to other methods. Our method
uses known state-of-art models to initialize the population,
and uses performance estimator to avoid inefficient mutation
and speed up the convergence.

2.2 Reading Comprehension.

There are many systems for reading comprehension that em-
ploy embedding at the character level and word level. (Chen
et al. 2017) applied some linguistic features to input embed-
ding. (Peters et al. 2018) introduce a new word embedding
called ELMo, which is learned by training a bidirectional
language model. (McCann et al. 2017) use a deep LSTM en-
coder trained for machine translation as contextualized word
vectors called CoVe. Adding ELMo and CoVe could im-
prove the performance of the common NLP tasks, by using
information from large datasets. In our paper, we take advan-
tage of these embeddings as the input layer in our automated
QA framework. (Wang and Jiang 2016) propose match-
LSTM to predict answer boundaries with pointer network.
The pointer network has also become a common method
for the model of reading comprehension. We use pointer-
network as the output layer for predicting the answer span.
(Seo et al. 2016) use use bi-directional attention flow mecha-
nism to obtain a query-aware context representation. (Wang
et al. 2017) proposed a self-matching attention mechanism
to refine the representation by matching the passage against
itself, which effectively encodes information from the whole
passage. (Huang et al. 2017) proposed a fully-aware multi-
level attention mechanism to capture the complete informa-
tion in one text (such as a question) and exploit it in its coun-
terpart (such as context or passage) layer by layer. (Yu et al.
2018) proposed use convolution and self attention to encode
text, where convolution models local interactions and self-
attention models global interactions.

These papers focus on modeling the interactions between
the context and the query. But for different datasets, the in-
teraction may complex and have no fixed pattern. (Joshi et
al. 2017) showed that BiDAF performs well in SQuAD 1.1
but failed in TriviaQA, which means different tasks need dif-
ferent model. In our paper, we leverage these research works
and use those proposed layers to design the search space for
QA model. As for the connections between those layers, we



Figure 1: Overall architecture of our framework

use the proposed evolution algorithm based neural architec-
ture search to find the best solution.

3. An Automated Question-Answering

Framework

Figure 1 shows the pipeline of our Question-Answering
framework. Here is an overview of our proposed framework:
Before being fed into the model, all documents and ques-
tions in a dataset will be tokenized and prepossessed to ex-
tract linguistic features. Then the state-of-art of model archi-
tecture in QA and diverse random model architectures mu-
tated from them will be added into initial populations. Fol-
lowing the traditional evolution algorithm(Real et al. 2017),
the framework will randomly pick two individual(models)
from populations. We then choose the model that achieves
better performance before mutation. We propose an optional
variant of the traditional mutation as an alternative to ran-
dom mutation. It uses a CNN-based performance predictor
to estimate the performance of models after possible muta-
tions. We will keep the history of the model structures hav-
ing been trained in the process of evolution, and train the
performance prediction model with the structure of those
QA models and their performance.

In the following sections, we will explain details for dif-
ferent components in our framework.

3.1 Initial Population

For better use of prior knowledge, we consider adding state-
of-art models into initialized population, including BiDAF
(Seo et al. 2016), RNET (Wang et al. 2017) and FusionNet
(Huang et al. 2017) and so on. It is also possible to add even
more known models to the framework, but we are going to
stick with those three models in our experiments.

Models designed by humans beings could be considered
as a local optima for neural architecture structure. Using
them speeds search but may also limit our search space.
Therefore, other models, obtained by performing a large
number of mutations on those known models are also added
to the initial population, which could help to guarantee the
diversity of population.

3.2 Search Space

Table 1 shows the statistics about the structures of other
state-of-art models. Based on that result, we use the follow-
ing mutation actions in our proposed framework.

• IDENTITY (Effectively means keep training).

• INSERT-RNN-LAYER (Inserts a LSTM. Comparing the
performance of GRU and LSTM in our experiment, we
decided to use LSTM here.)

• REMOVE-RNN-LAYER

• INSERT-ATTENTION-LAYER(Inserts a attention layer.
Comparing with other attention, we consider use symmet-
ric attention proposed by FusionNet (Huang et al. 2017))

• REMOVE-ATTENTION-LAYER

• ADD-SKIP (Identity between random layers).

• REMOVE-SKIP (Removes random skip).

• CONCAT-TWO-INPUT(Combines output of two layers
into one using concat operation)

The layers contained in search space were chosen for their
similarity to the actions that a human designer may take
when improving an architecture. The probabilities for these
mutations are equal before they are estimated by the perfor-
mance estimator.

3.3 Performance Estimator

In the search progress, we will generate several valid candi-
date models with the mutation space mentioned above. And
then our framework will use the performance estimator to
estimate the EM score of each candidate model.

To estimate the score of each candidate model, here we
use CNN instead of LSTM to build the prediction model.
The model configuration will be represented by an adja-
cency matrix of the computation graph. We believe that
CNN is able to capture shared structures in the neural net-
work, as those structures will exhibit locality in adjacency
matrix.



Model Name RNN Attention Skip Connection Conv Concat

BiDAF(Seo et al. 2016) Yes Yes No No No
DCN(Xiong, Zhong, and Socher 2016) Yes Yes No No Yes
ReasoNet(Shen et al. 2017) Yes Yes No No No
R-net(Wang et al. 2017) Yes Yes No No Yes
FusionNet(Huang et al. 2017) No Yes Yes Yes Yes
QANet(Yu et al. 2018) Yes Yes No No No

Table 1: Building blocks of known QA models.

Figure 2: Skeleton of our models

An adjacency matrix can be embedded to an 2D fea-
ture map, which have been proven can be effectively pro-
cessed by convolution neural network. Each adjacency ma-
trix’s shape is N⇥N⇥K, where N is the maximum number
of nodes the model may contain, and a K-dimensional em-
bedding is used to represent the relation of nodes.

The embedding of relation for the layers are related to the
search space, for example, if node X is the output of another
node Y , after getting through an LSTM layer, then the cell
in the X-th row and Y -th column of the feature map will
be the embedding vector of the relation “is input of LSTM“,
and the cell in the Y -th row and X-th column of the feature
map will be marked to the embedding vector of the relation
“is output of LSTM“. The way of encoding attention layer,
concatenate layer, and the skip connections is also similar to
this. “No connection“, “Self“, “Padding“ are considered as
special relation types, and are also added to the feature map
matrix.

We use a PreResNet50 (He et al. 2016b) as the model
to predict the performance of the reading comprehension
model in our framework. The output layer is changed to
be normalized by sigmoid function: 1

1+e�x , representing the
exact match score.

We use the following L2 loss for the training procedure.

L(✓) = (r � r⇤)2 (1)

where ✓ is parameters of the performance estimator, r is
the predicted performance of the model, r⇤ is the actual per-
formance of the model.

During the search progress, an increasing number of mod-
els will be trained, which means more and more training data
will be available for the performance estimator. Therefore,
the probability (p) of the model with better predicted perfor-
mance chosen will change by time:

p = 0.5 + 0.5 ⇤ min(epoch, epochmax)

epochmax
(2)

Where epochmax is a constant after which number of
epochs model with better predicted performance will always
be chosen, epoch is the number of model trained. The intu-
ition is that, as the number of models being trained increas-
ing, the performance estimator become more and more re-
liable. So as epoch is increasing, epoch is also expected to
increase, the probability of adopting the result proposed by
the performance estimator is higher.

The use of this performance estimator is optional. We an-
alyze how it affects the training procedure in the last section
of the paper.

3.4 Model Configuration

The model configuration in our framework contains three
parts: input layer, internal architecture, and output layer. The
input layer and output layer are fixed in our framework. in-
ternal architecture is only part we try to tune. Model Bench-
mark is a toolkit that will parse these configurations and
compile them to a model that could run in a deep learning
platform, after which we get the performance of this model.
• Input Layer

For the word embedding, we concatenate the pre-trained
300-dimensional GloVe vectors (Pennington, Socher, and
Manning 2014), 1024-dimensional ELMo vectors (Pe-
ters et al. 2018) and 600-dimensional CoVe vectors (Mc-
Cann et al. 2017). Following (Chen et al. 2017), we
use three additional types of linguistic features for each
word : 1) a 44-dimensional POS tagging embedding, 2)
an 13-dimensional NER tagging embedding, and 3) a 3-
dimensional binary exact match feature. The character
level embedding is the same as(Wang et al. 2017), tak-
ing the final hidden states of a bi-directional RNN applied
to embedding of characters in the token. We concatenate
all these embeddings as input layer in our framework for
queries and documents.

• Internal Architectures
Internal Architectures is the key part in our framework.
The internal architectures is generated from the configu-
ration and in the process of evolution.



The layers in internal architecture are always from the
search space.
– LSTM

LSTM(Hochreiter and Schmidhuber 1997) is a com-
mon type of RNN widely used in language models. In
our experiments, models with LSTM outperform those
with GRU (Cho et al. 2014). So we use LSTM instead
of GRU to extract language features.

– Attention
We use the symmetric attention function proposed by
(Huang et al. 2017), where the scoring function is

s = f(Ux)TDf(Uy)T (3)
We replaced the non-linearity function f with Swish
activation function (Ramachandran, Zoph, and Le
2017), because we found that Swish activation speeds
the training process of a single model.
The above attention scoring function is used for both
self-attention and document-to-question or question-to-
document attention.

– Concatenate Layer
Following (Huang et al. 2017), we use the concatenate
layer to fuse different level of concepts is helpful for the
model. Here we simply introduce this operation to our
framework, which concatenate the feature dimension of
document or question vector.

– Skip-Connection Layer
Skip connection is very common in very deep convo-
lution neural networks, and is used by (Yu et al. 2018).
Whether or not it works for RNN based architecture is
still uncertain, but considering the potential benefit, we
still add it to our framework.

• Output layer
We follow (Wang et al. 2017) and use pointer networks
(Wang and Jiang 2016) to predict the start and end posi-
tions of the answer. We use an avg-pooling over the query
representation to generate uQ for the pointer network.

uQ = avg pool({uQ
t }nt=1) (4)

Then we attend for the span start using the summarized
question understanding vector uQ.

sti = V Stanh(WSuP
i +WQuQ)

PS
i =

exp(sti)Pn
i=1 exp(s

t
j)

(5)

To use the information of the span start, we combine the
context understanding vector for the span start with uQ

through a GRU cell (Cho et al. 2014).

vQ = GRU(uQ,
nX

i=1

PS
i uP

i )

eti = V Etanh(WEuP
i +WQuQ)

PE
i =

exp(eti)Pn
i=1 exp(e

t
j)

(6)

During training, we minimize the sum of the negative log
probabilities of the ground truth start and end positions in
the predicted distributions. During prediction, we keep the
answer span poss, pose with maximum PS

possP
E
pose and

poss  pose�15. For datasets with questions impossible
to answer, a special “no answer“ vector is append to the
document sequence. When predicted poss points to this
vector, the problem is considered unanswerable.

The Pointer Network is always used as the output layer in
our framework. Figure 2 shows the skeleton of our model.

3.5 Algorithm Detail

After the above discussion about the details of our frame-
work, we show the modified version of evolution algorithm
used in our framework.

Algorithm 1 Evolution-based model search with perfor-
mance estimator

1: N population size
2: PI existing models
3: M performance estimator update frequency
4: P  PI
5: for i 2 0 : (N � len(PI)) do

6: PI sample PI.random choice()
7: P  P + PI sample.multiple mutate()

8: for w 2 workers do

9: i, j = sample(P )
10: if performance(i) > performance(j) then

11: Delete j from P
12: k  mutate(i)
13: else

14: Delete i from P
15: k  mutate(j)

16: p = 0.5 + 0.5 ⇤ min(epoch,epochmax)
epochmax

17: if random(0.0, 1.0) > p then

18: k  k.random choice()
19: else

20: k  k.choice with value function()

21: if total models trained()%M == 0 then

22: Update performance estimator model
23: Train k and put it into population

4. Experiments

We test our framework on three different datasets: NewsQA
(Trischler et al. 2016), SQuAD 1.1 (Rajpurkar et al. 2016),
SQuAD 2.0 (Rajpurkar, Jia, and Liang 2018).

Unlike other existing datasets like MSMARCO (Nguyen
et al. 2016),these datasets focus exclusively on questions
with answers that can be found in the document. NewsQA is
a Reading Comprehension dataset containing over 100,000
human-written question-answer pairs, whose documents are
from CNN/Daily Mail. Comparing with SQuAD 1.1, the
number of question-answer pairs of NewsQA is slightly
smaller but the average length of query and documents is
much longer. SQuAD 2.0 is much more harder dataset with



Single Model Exact Match F1

FastQA(Weissenborn, Wiese, and Seiffe 2017) 68.4 77.1
BiDAF(Seo et al. 2016) 68.0 77.3
SEDT(Liu et al. 2017b) 68.2 77.5
RaSoR(Liu et al. 2017a) 70.8 78.7
FastQAExt(Weissenborn, Wiese, and Seiffe 2017) 70.8 78.9
ReasoNet(Shen et al. 2017) 70.6 79.4
DrQA(Chen et al. 2017) 70.7 79.4
R-net(Wang et al. 2017) 75.7 83.5
FusionNet(Huang et al. 2017) 75.3 83.6
QANet(Yu et al. 2018) 76.2 84.6
EvolutionRC 78.9 86.1

R.M-Reader(Hu et al. 2017) 78.9 86.3
SLQA+(Wang, Yan, and Wu 2018) 80.0 87.0

Table 2: The performance of EvolutionRC and competing models on SQuAD 1.1 development set.

over 50,000 unanswerable questions written adversarially by
crowd-workers. Those unanswerable questions are produced
by looking up similar answerable ones. (Rajpurkar, Jia, and
Liang 2018) shows a strong neural model for SQuAD 1.1
dataset suffers from a huge drop when transfer to SQuAD
2.0.

4.1 Experiment Setup

For the evolutionary algorithm, we set the initial population
size to 32. The maximum number of layers is limited to 50.
The number of workers is 8, which means we run the archi-
tecture search in 8 GPUs in parallel. In these experiments,
we do not use the performance estimator to speed up the
training procedure.

For the SQuAD v1.1 and SQuAD v2.0 datasets the GPU
we used is Tesla P100-PCIE. For NewsQA dataset, whose
average context length is much longer, we use Tesla P40-
PCIE, which has 24GB of RAM in total.

For data preprocessing, we use the tokenizer from the
Stanford CoreNLP (Manning et al. 2014) to preprocess each
passage and question and to extract part-of-speech tagging
(POS) and named entity recognition (NER) features. We
also apply dropout (Srivastava et al. 2014) before all RNN
layers, after embedding layers, and before linear transform
in attention cell. The dropout rate for RNN and embedding
layers is 0.5. The dropout rate for attention cell is 0.3.

The model is optimized by Adamax (Kingma and Ba
2014), with initial learning rate lr = 2 ⇥ 10�3, � =
(0.9, 0.999), and ✏ = 1⇥ 10�8.

We train each model for 50 epochs. Also we use early
stopping to avoid overfitting during the trial experiments.
The max patience is 5 epoch. In addition, the patience will
increase when the performance is still increasing with num-
bers very closed to patience of epochs are trained.

For each dataset, we stop the experiment after 500 mod-
els are trained. This costs about one week for 8 GPUS, or
about 50 GPU days. However, we believe that it is possi-
ble to use lower dropout rate and downsampled datasets to
significantly lower the computation cost.

The batch size is 64 for the SQuAD v1.1 and SQuAD
v2.0 datasets, and is 32 for NewsQA dataset. When search-

ing for the architecture, we only use CoVe feature. However,
we use both CoVe and ELMo feature when retraining the
found model.

We use the official evaluation script for all datasets. We
use (Microsoft Research Asia 2018) as our experiment plat-
form.

4.2 Main Results

Using our proposed framework for reading comprehension,
we performed architecture search on SQuAD 1.1, SQuAD
2.0, and NewsQA Dataset. We report average exact match
and F1 scores for our model after retrained with ELMo em-
bedding. The searched model achieves 78.9 EM and 86.1 F1
on SQuAD 1.1, 69.9 EM and 72.5 F1 on SQuAD 2.0. On
NewsQA dataset, the found model achieves 47.0 EM and
62.9 F1. We also compare the model searched by our method
with other models designed by humans in Table 2, Table 3,
and Table 4.

For SQuAD 1.1 and SQuAD 2.0, our best model is able
to outperform many published state-of-art models. But the
searched model still cannot reach the performance of top
models in the SQuAD competition leaderboard.

We believe that those model might be using more domain
knowledge, external data sources, more techniques for data
augmentation, or different ways of predicting the range for
the answers, which is beyond the scope for our proposed
framework. Besides, we didn’t tune hyper-parameters for
our best model.

5. Discussion

There are two key points in our proposed framework: ini-
tializing population from existing models, and guiding the
evolution process with a value-function based performance
estimator. To understand how they affect the process of evo-
lution algorithm, We conduct ablation studies on these com-
ponents of the proposed framework, including the proposed
initialization method, and the performance estimator.



Single Model Exact Match F1

BNA(Rajpurkar, Jia, and Liang 2018) 59.8 62.6
DocQA(Rajpurkar, Jia, and Liang 2018) 61.9 64.8
DocQA + ELMo(Rajpurkar, Jia, and Liang 2018) 65.1 67.6
EvolutionRC 69.9 72.5

Table 3: The performance of EvolutionRC and competing models on SQuAD 2.0 development set.

Single Model Exact Match F1

Match-LSTM(Wang and Jiang 2016) 34.4 49.6
BARB(Trischler et al. 2016) 36.1 49.6
BiDAF (Seo et al. 2016) 37.1 52.3
FastQA(Weissenborn, Wiese, and Seiffe 2017) 43.7 56.4
FastQAExt(Weissenborn, Wiese, and Seiffe 2017) 43.7 56.1
EvolutionRC 47.0 62.9

AMANDA(Kundu and Ng 2018) 48.4 63.3

Table 4: The performance of EvolutionRC and competing models on NewsQA development set.

5.1 Initialization Method

To understand how the initialization method affect the fi-
nal result of evolution algorithm, we run the framework on
SQuAD dataset again, with completely random initializa-
tion. All other experiment setup is kept the same. Here is
the table showing the difference. With the proposed initial-
ization method, the EM score increases from 76.0 to 78.9.

Single Model Exact Match F1

EvolutionRC 78.9 86.1
Naive Evolution(Real et al. 2017) 76.0 84.1

Table 5: The effect of initializing population with known
models.

5.2 Performance Estimator

To investigate how the CNN-based performance estimator
affects the training procedure, we perform experiments on
SQuAD dataset, with and without the performance estima-
tor. When running this experiment, we initialize the popu-
lation completely by random. The evolution process stops
after 400 models are trained. We choose epochmax = 100
for the performance estimator in this experiment.

Figure 3: Convergence of evolution process

From the above figure, we can see the performance es-
timator speeds up the convergence of the evolution algo-
rithm by avoiding ineffective mutations. However, the per-
formance estimator does not improve the final result, so we
didn’t use it in the experiments mentioned in Section 4. The
experiment is repeated only once, so it might be affected by
random factors.

6. Conclusion

In this paper, we propose a new evolution algorithm based
framework for different Question-Answering problems. We
propose a new variant of evolution algorithm, which uses
a CNN-based performance estimator, and existing human-
designed models as starting points for the mutation process.
Our experiment shows that (i) This framework achieves near
state-of-art performance on multiple datasets with limited
human intervention and acceptable computational resources.
(ii) The proposed way of initializing population is better than
random initialization, in terms of final result. (iii) The use of
the proposed performance estimator speeds up the conver-
gence of the search progress.
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Abstract

Enterprise data is usually stored in the form of relational
databases. However, accessing this data currently requires
users to understand a query language such as SQL. Business
analysts more often are not familiar with the syntax of SQL
and they often struggle with data science tools to get data
insights. State of art tools do not have an agent driven natural
language based conversational interface that can interact with
user and provide necessary data insights. Moreover, State of
art tools have limited capabilities to understand user’s context
and intentions.In this paper, we propose a deep learning based
framework that generates a database query from a natural
language sentence. Interesting feature of our approach is to
focus upon domain agnosticity. Our framework is based on
a set of machine learning models that create an intermediate
sketch from a natural language query. Using the intermedi-
ate sketch, we generate a final database query over a large
knowledge graph. Our framework supports multiple queries
such as aggregation, self joins, factoid and transnational. We
evaluate the proposed approach over widely popular WikiSQL
dataset and two enterprise datasets. Our results show that even
with limited training data, model is able to capture the user’s
semantics well. The system is designed for usability such that
even naive business analysts can use the system comfortably.

Introduction

Various enterprise applications such as finance, retail, phar-
macy etc. store a vast amount of data in the form of relational
databases. However, accessing relational databases requires
an understanding of query languages such as SQL, which,
while powerful, is not easy for business analysts to master.
Natural language interfaces (NLI), a research area at the inter-
section of natural language processing and human-computer
interactions, seeks to provide means for humans to inter-
act with computers through the use of natural language. We
explore one aspect of NLI applied to relational databases; cre-
ating a data science assistance framework that can be used by
business analysts to get data insights using natural language
interactions.

Building a data science assistant that captures context and
semantic understanding is an important and challenging prob-
lem. The problem is multi-dimensional as it involves com-
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plexities at multiple levels e.g. relational database level, natu-
ral language interface level and semantic understanding level.
At relational database level, the system must be able to handle
the complexities related to data representation. At natural lan-
guage interface level, the system should support NL related
issues such as handling ambiguity, variations and semantics.
Most importantly, the system must be able to understand
user’s context and should respond back in a meaningful way.

There are a number of recent works which are trying to
build Conversational AI systems that support human-like
cognitive capabilities such as context-awareness, personal-
ization, and ability to handle complex NL inputs. Apple Siri,
Microsoft Cortana, Amazon Alexa are some of the widely
used personal assistants that are already in market. However,
there are still a variety of open research issues while design-
ing conversation AI based digital assistant tools (Jadeja and
Varia 2017). To address the limitations of existing techniques
towards designing conversational AI based personal digital
data assistants, we make following key contributions in this
paper:

• We present Curie, a data science assistant that supports
NL conversational interface for effective data assistance
across a range of tasks i.e. NL question answering and
dialogue, data visualization and data transformation. The
Curie platform is designed to support context, intent identi-
fication, multiple ways of interaction through dialog, ques-
tion answering and a variety of NL query processing capa-
bilities.

• Secondly, we also introduce a novel approach for parsing
natural language sentences and generating an intermediate
representation (query sketch) using a combination of ma-
chine learning models. This intermediate representation is
further used to execute low level database queries.

• We demonstrate our results on two enterprise datasets and
one public dataset i.e. WikiSQL. Our results show state of
art performance on these datasets while supporting transfer
learning that ensures that our approach can be directly used
across a variety of domains with minimal effort.

Related Work

There are a lot of conversational AI based personal assis-
tant tools already in market for the end users. Some of these



tools are designed for open-domain conversations e.g. Cor-
tana, Siri, Alexa and Google Now (Sadun and Sande 2013;
Ehrenbrink, Osman, and Möller 2017). On the other hand
there are also tools where focus is on supporting interac-
tive data assistance e.g. Microsoft Power BI (Parks 2014).
However, there are still limitations of the existing solutions
in terms of natural language based conversational capabili-
ties while supporting data assistance. There are still various
open issues in terms of semantic understanding and context-
awareness user’s queries. Most important task for building
a NL based data assistant is to generate structural query lan-
guage (SQL) queries from natural language. Answering a
natural language question about a database table requires
modeling complex interactions between the columns of the
table and the question. Jedeja et al. present four different
perspectives namely user experience, information retrieval,
linguistic and artificial intelligence for the evaluation of con-
versational AI systems (Jadeja and Varia 2017).

The study of translating natural language into SQL queries
has a long history. Popescu et al. introduce Precise NLI, a se-
mantic parsing based theoretical framework for building reli-
able natural language interfaces (Popescu, Etzioni, and Kautz
2003). This approach rely on high quality grammar and is not
suitable for tasks that require generalization to new schema.
Recent works consider deep learning as the main technique.
There are many recent works that tackle the problem of build-
ing natural language interfaces to relational databases using
deep learning (Xu, Liu, and Song 2017; Yaghmazadeh et
al. 2017; Zhong, Xiong, and Socher 2017; Yin et al. 2015;
Pasupat and Liang 2015; Li and Jagadish 2014; Yu et al. 2018;
Dong and Lapata 2018). Zhong et al. (Zhong, Xiong, and
Socher 2017) propose Seq2SQL approach that uses reinforce-
ment learning to break down NL semantic parsing task to
several sub-modules or sub-SQL incorporating execution
rewards. Yavuz et al. introduce DialSQL, a dialogue based
structured query generation framework that leverages human
intelligence to boost the performance of existing algorithms
via user interaction (Yavuz et al. 2018). The flexibility of
our approach enables us to easily apply sketches to a new
domain. Our framework also does not require large corpus of
NL sentences as training input.

Curie: Data Science Assistant

Curie is designed as a set of intelligent suite of AI tools
designed to help business analysts in getting insights about
data in a user friendly way. Instead of meandering through the
database for a small detail, Curie provides an interface where
business analysts just need to type their query in Natural
Language (English) and system will present the results. Curie
supports context understanding by precisely capturing user’s
intent and responding appropriately.

More often, business analysts have a range of queries that
they perform to get data insights (See Figure 1). Sometimes
they just need a one line answer for their questions such as

“What is phone number of Julia". Sometimes it might be some
aggregation query e.g. “How many employees are hired in
2018" and in some cases they might be interested in visualiz-
ing the information in the form of charts e.g. “Show me the
acceptance rate of EMNLP over last ten years". Therefore,

Table 1: Variety of Natural Language Queries
Transactional How many employees are in Mumbai?
FAQ How can I apply sick leave?
Factoid What is the population of Mars?
Aggregations How many employees in each project?
Visualization Tell me the monthly profit of company in

last decade?
Sorting List all employees based on their age

Curie is designed to handle all these variations of NL queries.
It supports a conversational interface that business analysts
can use and get their information in fraction of seconds. It
makes interactions with data quick, efficient, and easy. De-
pending on the nature of query, Curie can also respond with
appropriate visualized interpretation of the data in the form
of Pie Charts, Graphs etc.

We propose an architecture where a database query is
formed from a natural language sentence with the help of an
intermediate form i.e. query sketch. Our system comprises
of two parts: a) Mechanism to generate an intermediate form
(Query Sketch) given a NL sentence and b) Approach of
transforming a sketch to database query.

Deep Learning based Framework for Query

Sketch Generation

In order to generate the query sketch, we have a pipeline of
multiple sequence tagging deep neural networks. Our archi-
tecture consists of a bidirectional LSTM network alongwith
a CRF (conditional random field) output layer. In our archi-
tecture framework, the sequence of word embedding is given
as input to a bidirectional LSTM. Instead of using the soft-
max output from this layer, we use a CRF Layer yielding
the final predictions for every word (See Figure 2). We use
ELMO embedding that are computed on top of two-layer
bidirectional language models with character convolutions as
a linear function of the internal network states (Peters et al.
2018). The character-level embedding have been found useful
for specific tasks and to handle the out-of-vocabulary prob-
lem. The character-level representation is then concatenated
with a word-level representation and feed into the Bidirection
LSTM as input. The intent is to identify the parts in the sen-
tence which are relevant. We annotate a NL query as follows.
{What is the employee id of John} is annotated as {0 0 0 A A
0 B} (See Figures 3 and 4 for reference schema and example
sequence respectively).

This example shows that there are two concepts employee
id and John marked as A and B respectively. The same token
is used for the concepts which consist of more than one word
e.g. employee id consists of two words, so we mark them
with token ’A’. We follow this representation in our models.
This approach makes our system database agnostic and even
with comparatively less amount of training data we are able
to extract the information out of the sentence. Since models
are dependent on each other, we will explain each of them
with the help of an example: How many employees work in
project Curie?
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Figure 1: Models for NL to Query generation

Predicate Finder Model This model finds the target con-
cepts (predicates) P from the NL sentence. In case of
database query language, predicate refers to the SELECT
part of the query. Once predicates are identified, it becomes
easier to extract entities from the remaining sentence. The
input to the model is a vector form representation of NL sen-
tence. For example, a natural language sentence, {How many
employees work in project Curie} is annotated as {0 0 A 0 0
B 0}. In this example employees and project are predicates.

Entity Discovery Model This model aims to find the val-

ues/entities in the sentence. The output from predicate model
is taken and reformed as: {How many <predicate> work
in <predicate> Curie}. The predicates are replaced with
< predicate > token.

We assume that structured data for the domain is present
in Apache-Solr. Thereafter, we discover the entities in
the reformed sentence using Lucene. This is explained as
follows. Firstly, the part-of-speech tags are extracted from
the input. Thereafter, we ignore part-of-speech tags which
are stop words. Now, using a sliding window we prepare
N-grams from the remaining string. For each N-gram, we
do a search using Apache Lucene. N-grams which corre-
spond to an entity in the data and having the highest score
are picked. The detailed approach for this model is explained
using Algorithm 1. For the above mentioned example, re-

maining string would be: work Curie. Hence, Curie is picked
as an entity.

Type Level Finder This model identifies the type of con-

cepts (predicates and values) at the node or table level. For
example, employee id belongs to Employee node and Em-
ployee is a PERSON, so the type of employee id is PERSON.

If a concept is present in more than one table, type infor-
mation helps in the process of disambiguation. For example,
consider following sentences:
• What is the employee id of Washington?
• List all the stores in Washington.

Here, in first example Washington refers to the name of
a person, whereas in second example it is the name of a
location. In such cases, this model is useful to disambiguate
that in first example the node level type is PERSON and in
second example it is LOCATION. This helps in making the
overall framework database agnostic. In this model, all the
entities in input are marked with tag <value>. For example,
natural language sentence, {How many employees work in
project <value>} is annotated as {0 0 person 0 0 project
project}.

Attribute Level Type Finder This model identifies the at-

tribute type of concepts (predicates and values). For example,
let’s take two sentences:
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Figure 2: Main architecture of the Seq Tagging network.
Word embedding and character embedding are concatenated
and given to a bidirectional LSTM. First layer represents the
word and the left context, second layer represents the word
and its right context. These two vectors of bi-directional
LSTM are concatenated and are projected into CRF layer
which finally yields the prediction of the every word.

• What is the employee id of May?
• List all employees hired in May?

In these examples, May is present in the same table Em-
ployee, but refers to different attributes. The attribute type
information model here can easily distinguish based on the
nature of query that in first example, May is the name of a
person and in second example it is date. The attribute type
information in combination with node type information helps
in increasing the accuracy. In this model, all the entities in in-
put are marked with tag <value>. For example, {How many
employees work in project <value>} is annotated as: {0 0
name 0 0 name name}.

Predicate Value Finder In some queries predicate value

bindings are already present. For example, let’s take two
examples:

• How many employees work in Curie?
• How many employees work in project Curie?

In first example, there is no information about the con-
cept Curie, but the second example describes that Curie is
some project. This model binds the predicate, in this example
project to the value or entity Curie. We replace the predicates
with tag <predicate> and entities with tag <value>. {How
many <predicate> work in <predicate> <value>} is anno-
tated as: {0 0 0 0 0 A A}. The tokens at index 5 and 6 are
binded as [Project] ?? [Curie]. “??" slot will be filled with an
operator that we illustrate in next model.

Aggregations & Operators Finder In this model, aggre-

gations and operators are predicted for predicates and en-
tities respectively. As explained earlier, our framework cur-
rently supports following set of aggregation functions: count,
groupby, min, max, sum, and sort. Similarly, following set of
operators are also supported: =, <,>,<>,>=, <=. {How

procedure ExtractEntity(Q, T):

Input: natural language query Q, stop/unwanted
pos tags T

Output: A list of entities E
PosTags TAGGER(Q);
S  ;; // Remaining string

foreach postag pi 2 PosTags do

if pi /2 T then

S.add(p)
end

end

NGrams findNgrams(S);
E  ;; // List of entities

while i < length(NGrams) do

c Q(NGrams(i));
maxScore 0;
e ;;
foreach integer k 2 (i, length(NGrams))
do

c.add(Q(NGrams(k)));
s luceneSearch(c);
if s > maxScore then

maxScore s;
e.add(Q(NGrams(k)));

end

end

if e 6= null then

E.add(e);
end

end

return E;
Algorithm 1: Finding the entities from the NL sen-
tences

many <predicate> work in <predicate> <value>} is anno-
tated as: {0 0 count 0 0 0 equal}. We can infer that predicate
project and entity Curie are related as [Project] = [Curie].
Finally, using the output from all these LSTM based deep
learning models, following intermediate form (query sketch
S) is generated.

S e l e c t : {
p r e d _ h i n t := employees
t y p e := PERSON
a t t r _ t y p e := name
a g g r e g a t i o n := c o u n t

}
C o n d i t i o n s : {

p r e d _ h i n t := p r o j e c t
v a l u e := C u r i e
t y p e := PROJECT
a t t r _ t y p e := name

}

Generating Database Query from Sketch

The process of generating the query is independent of un-
derlying database i.e. the same approach can be used for
generating queries across databases. We demonstrate this con-
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cept using two popular relational database query languages:
SQL (structured query language) and CQL (cipher query lan-
guage). The general idea to generate a query is as follows.
Sketch S is a set {P,C}, where P is a set {p1,p2,p3,...
pn} and each pi is {ni, ai, hi, gi}, where
ni = Node/table level type of predicate pi
ai = Attribute/predicate level type of predicate pi
hi = NL Hint for the predicate pi
gi = Aggregation information for the predicate pi
Similarly, C is a set {c1,c2,c3,... cn} where each ci
is {ni,ai,hi,vi,oi}
ni = Node/table level type for the predicate involved in condi-
tion ci
ai = Attribute/attribute level type for the predicate involved
in condition ci
hi = NL hint for the predicate involved in condition ci
gi = Value involved in condition ci
oi = Operator involved in condition ci

Provided with a sketch S, we generate a database query Q.
As explained earlier, sketch contains information about all
the required predicates L, i.e. the list of attributes/columns
that need to be extracted from Table T. This component will
give a new relation that only contains the columns in L. This
operation is projection (⇧) in relation algebra. The sketch
has also information about all conditions ' which gives us
a new relation that contains only those rows satisfying ' in
T. This is the selection (�) operation of relation algebra. To
generate the query following set of operations are executed
over the sketch:

• Analysing the predicate part (P) of the sketch:
For all predicates pi 2 P do:

– Use the NL hint hi to check semantic similarity with all
the predicates of table type ni and attribute type ai to
get the closest matching predicate p

– Find the table t of the predicate p of the table type ni

– L = {p | p 2 P}

• Analysing the condition part (C) of the sketch:
For all the condition ci 2 C do:

– Use the value vi to perform EDL and select the best
candidate using NL hint for predicate hi , attribute type
ai and table type ni to find the predicate p for the value
vi

– Find the table t of the predicate p of the table type ni

– ' = {p o v | p,o,v 2 P}

The next step is to find all the unique tables (U) involved
in a given sketch S. If the len(U) > 1, we find the shortest
path passing through all the unique tables. We assume that
there is a path if the foreign key relationship exists between
tables. This step will give us join (./) operation of relation
algebra. Operator and aggregation information are already
present in the sketch S. Now, combining these, we compute
the final relation (R). Using R, we finally compute the DB
specific query (See Algorithm 2 for details). For example, a
natural language sentence {“How many employees in each
project"} leads to following database query:

⇧count(employee_id),g(project_name)

(Employeepid_fk ./pid Project)
a. Database Query SQL:

SELECT COUNT(emp_id), proj_name
FROM Employee INNER JOIN Project

ON (pid_fk = pid) GROUP BY proj_name

b. Database Query CQL:

MATCH
(e:Employee)-[:WORKS]�>(p:Project)

RETURN
COUNT (e.employee_id), p.project_name

Results and Discussion

We conducted our experiments on an Intel Xeon(R) computer
with E5-2697 v2 CPU and 64GB memory, running Ubuntu
14.04. We evaluated Curie on three real-world datasets,



procedure QueryGenerator(S, D):

Input: Sketch S,
Database Information D
N  ;; // List of nodes

foreach select si 2 S.select do

S.predicate w2vSimilarity(si, D);
// Semantic similarity with

all the properties in actual

graph

N.add(node)
end

foreach condition ci 2 S.conditions do

node EntityDiscovery(ci.value);
// Find the nodes in which

value is present

if node 6= null then

N.add(node)
end

end

ShortestPath FindShortestPath(N);
Q ;; // Query

if ShortestPath 6= null then

Q.match = ShortestPath;
foreach condition ci 2 S.conditions do

Q.where ci;
end

foreach select si 2 S.select do

Q.return si;
end

Query  ConstructQuery(Q);
R FetchFromDB(Query); // Fetch

result from db

return R;
end

else

return "No Matching Data";
end

Algorithm 2: Generating the DB Query from Sketch
S

Table 2: Datasets and their statistics
Dataset # Tables # Columns Train. set Test set
Ent. Dataset-1 5 42 1700 300
Ent. Dataset-2 3 70 1700 300
WikiSQL 24241 1542564 56355 15878

0

10

20

30

40

50

60

70

80

90

100

Ent. Dataset-1 Ent. Dataset-2 WikiSQL

Accuracy (Intermediate Form) Accuracy (Execution)

Figure 5: Overall accuracy across Datasets

out of which two are our internal enterprise datasets (See Ta-
ble 2). First dataset is related to employees in a large software
services company and their allocations. Our second internal
dataset is about a large pharmaceutical company’s stores and
employee’s information. 1 Our third dataset for experimental
evaluation is widely used WikiSQL dataset. Ent. Dataset-1
& 2, composed of following type of queries: factoid, self
joins, Group By, sorting, and aggregations. WikiSQL dataset
is composed of factoid, aggregation. Queries in WikiSQL
were only over single columns.

Note that, in order to generate the intermediate
form(sketch), all models are not necessary. The predicate,
value, aggregation & operator models are sufficient to gen-
erate the sketch. The type, attribute and PV binding mod-
els are just used to improve the accuracy. As seen in Ta-
ble 3 and Figure 5, Curie has shown a very good perfor-
mance for Ent. Dataset-1 & 2. Recent works have reported
approx. 80% accuracy on WikiSQL dataset (Guo et al. 2018;
Sun et al. 2018). Our results also demonstrate similar re-
sults with simple network architecture. Our entity discovery
model was based on the Lucene search. It could be further
improved by combining Lucene search with deep learn-
ing based entity extraction. Interestingly, for evaluating Ent.
Dataset-2, we just used the same model that was trained
on Ent. Dataset-1. We can see that almost similar results
were achieved on the latter dataset demonstrating the transfer
learning capabilities of our ML models.

1These datasets are available for download and public use at
https://github.com/nlpteam19/curie.



Table 3: Accuracy across models for all datasets
Ent. Dataset-1 Ent. Dataset-2 WikiSQL

Predicate Acc. 94.6 93.9 91.4
Value Acc. 94.56 92 88.2
Type Acc. 84 82.86 NA
Attribute Acc. 80 78.2 NA
PV Binding Acc. 92.57 92.34 NA
Aggr. & Operator Acc. 93.1 93.4 92
Overall Sketch Acc. 86.64 84.74 72.1
Overall Exec. Acc. 91.78 87.3 75.24

Conclusion and Future Work

We proposed Curie as a novel framework for performaing
natural language question answering over BI data. Our ap-
proach is based on deep learning using multiple sequence
tagging networks and knowledge graph that uses minimal
training data and supports data assistance across multiple
domains. Our framework captures the user context and pro-
vides a robust conversational interface for getting insights
in eneterprize data. In future, we plan to explore and eval-
uate multi-tasking capabilities i.e. having an intermediate
representation and supporting a range of other tasks.
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Abstract 
The dynamics of the world is often bound up in processes.  
These include continuous processes, such as flows and mo-
tion, and discrete processes, such as count and break.  Things 
that occur in the world can often be described at multiple lev-
els of detail, using combinations of continuous and discrete 
processes, and it is important to be able to shift among levels 
of detail as needed for communication and understanding.   
This paper describes step semantics, a framework that draws 
upon prior work in qualitative reasoning and discrete action 
representations to provide a set of representation conventions 
for processes described in natural language, independent of a 
particular task or dataset.  We explore its potential in two 
ways: Analyses of recipes with complex temporal structure 
and learning from AI2’s ProPara dataset.   

 Introduction   
Human level complex question answering requires deep un-
derstanding of processes and procedures. These processes 
can include continuous quantities, like speed, or discrete 
quantities, like integer counts.  Moreover, processes and 
their sub events are often described at different levels of de-
tail.  For example, “cook dinner” can be viewed as a discrete 
event, but it can involve many instances of continuous pro-
cesses (e.g. mixing, splitting, heating, cooling) when viewed 
at a finer level of detail.  Similarly, the life cycle of a frog 
might be described in terms of three discrete states: eggs, 
tadpoles, and adults, even though the growth of legs in a tad-
pole and the shrinkage of its tail happen smoothly over many 
days.  Question-answering systems need to be able to repre-
sent both discrete and continuous processes and reason 
about them in ways that are compatible with each other.   
 Although considerable advances have been made in rea-
soning for question-answering, understanding processes is 
still a major challenge.  Few datasets include questions that 
require inference about processes, and most are in the 
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domain of science tests, e.g. ARC (Clark et al. 2018) & Pro-
Para (Dalvi et al. 2018).  These datasets are steps in the right 
direction, but there are more subtle phenomena that they do 
not test, as explained below.  
 This paper presents a representation for processes de-
scribed in text that combines qualitative process theory (For-
bus, 1984) with models of discrete actions and change from 
OpenCyc and FrameNet to go beyond what either could do 
alone.  We show the utility of this synthesis by examining 
both recipes, which can incorporate complex temporal struc-
ture and combinations of continuous processes and discrete 
actions, and learning from AI2’s ProPara dataset.  We argue 
that this synthesis provides a prerequisite for human-level 
reasoning for answering questions about processes. 

Background & Related Work 

To provide a set of representation conventions for pro-
cesses described in natural language, we draw upon prior 
work in qualitative reasoning and discrete action represen-
tations, which we summarize here. 

Qualitative Process Theory 
Qualitative process theory is a representational system for 
describing continuous processes.  Processes provide a no-
tion of mechanism, in that, aside from the actions taken by 
agents, ultimately all changes are explainable in terms of the 
effects of processes.  This strong inductive bias simplifies 
learning and conceptual change (e.g. Friedman et al. 2017).  
Liquid flow, for example, happens between a source and 
destination.  Its direct effects – direct influences – are spec-
ified as part of the process.  For example, in liquid flow,  
 (I+ (AmountOf ?dest) (FlowRate ?lf)) 
 (I- (AmountOf ?src) (FlowRate ?lf)) 

 



That is, the amount of liquid in the source is decreased by 
the flow rate of the liquid flow, and the amount of liquid in 
the destination is increased by the same rate.  Processes are 
active when their conditions are satisfied, e.g. for liquid 
flow, when the pressure in the source is greater than the 
pressure in the destination.  Continuous processes are typi-
cally expressed in language via verbs, e.g. flow, move.  Par-
ticipants are typically described in language via role infor-
mation about the verb, including prepositional phrases.  For 
example, “Water flowed out of the bathtub onto the floor.” 
describes a liquid flow whose source is the bathtub and 
whose destination is the floor.  Notice that the path is im-
plicit: This is a common property of language, we tend to 
leave implicit things that are not important or are inferable 
by the listener.   
 Causal laws associated with objects support inferring the 
indirect effects of processes via qualitative proportionali-
ties, which are partial information about functional depend-
encies.  For example, in a contained liquid (Hayes, 1984),  
 (qprop+ (Level ?l) (AmountOf ?l) 
 (qprop+ (Pressure ?l) (Level ?l)) 
That is, a change in amount will cause a change in level, 
which in turn will cause a change in pressure.   
 Quantities in QP theory are described in terms of ordinal 
relationships with other quantities, where the relevant set of 
comparisons is automatically derived from the structure of 
the domain theory.  For example, a liquid which has a fluid 
path to other liquids will lead to their relative pressures be-
ing tracked, because that is part of what determines if liquid 
flow is active.  If phase changes such as freezing and boiling 
are under consideration, the temperature of the liquid will 
also be compared with its melting and boiling points.  These 
limit points are often mentioned in texts, e.g. “When all the 
water is drained from the pasta…”  While sometimes spe-
cific numerical values are known (e.g. “Cook the roast until 
its internal temperature is 165 degrees.”), often they are not 
(e.g. “Wait until the mixture has cooled.”).   
 Qualitative representations carve time up into discrete 
units, based on when qualitative properties change.  Follow-
ing Hayes (1984), we represent changes over time in terms 
of histories, which are pieces of space-time over which the 
qualitative properties of some set of objects is the same.  For 
instance, the cooking episode in the history of the creation 
of a roast starts when the roast is placed in the oven and ends 
when it is removed.  Its spatial aspect is the union of the 
spatial aspects of the participants in it, e.g. the oven and the 
roast.  We note that, in many qualitative reasoning projects, 
a more global notion of qualitative state is often used, where 
all of the entities under consideration are lumped together.  
We prefer using histories here because they allow for finer-
grained decomposition of behavior that seems more suitable 
to the level of partial information found in language.  

Events and Discrete Actions 
To represent events, we draw upon a combination of con-
cepts from FrameNet (Ruppenhofer et al. 2016) and the 
OpenCyc ontology. Specifically, we use neo-Davisonian 
representations, where events are reified and role relations 
are used to describe their particular aspects, such as partici-
pants, location, and duration.  For example, consider the 
word “convert”.  In Cyc conventions, the word itself is de-
noted by an entity (i.e. Convert-TheWord).  FrameNet 
has four senses of convert when used as a verb, which 
draw on three semantic frames (i.e. FN_Undergo_trans-
formation, FN_Cause_change, and FN_Ex-
change_currency).  Each sense is also linked in the KB 
to an event from the Cyc ontology (i.e. Converting-
Something, Convincing-CommunicationAct, Cur-
rencyExchange, IntrinsicStateChange).  The 
FrameNet information provides two valuable sources of in-
formation for supporting natural language understanding.  
The first is a mapping from lexemes (i.e. word senses) to 
frames.  For example, eight lexemes evoke the FN_Creat-
ing frame. The second are a set of valence patterns that 
help constrain parsing by stating what patterns of auxiliary 
phrases are common.  The OpenCyc information provides 
semantic constraints, including type information, allowable 
role relations, and inference rules concerning that type of 
event.   
 We assume events take time, although for some perspec-
tives, that time is so short that it can safely be treated as an 
instant (Allen & Hayes, 1990).  Events whose internals are 
irrelevant to understand a particular text can be considered 
as discrete actions.  To provide the inferential semantics 
for discrete actions, we assume STRIPS operators (Fikes & 
Nilsson, 1971) for simplicity.   
 We note that in the Qualitative Reasoning community, 
there have been several prior efforts that integrate discrete 
and continuous models of actions and processes, albeit for 
very different purposes.  Hogge (1987) described how QP 
descriptions of processes could be compiled into operators 
for use with a temporal planner.  Forbus (1989) explored 
how STRIPS operators could be added to envisionments 
based on QP theory, to simulate systems that incorporated 
actions alongside physical processes.  Drabble (1993) 
showed how QP theory could be combined with an HTN 
planner to both generate and execute plans involving both 
actions and processes.  None of these prior efforts ad-
dressed integrating continuous and discrete representations 
in understanding natural language, which is our focus here.      

Answering Questions about Processes 
Reading comprehension is largely evaluated through ques-
tion answering tasks.  State of the art performance on these 
tasks is generally achieved using artificial neural networks 
that take a query and context (e.g. a paragraph) as inputs and 



predict a span of text within the context that contains the 
answer (e.g. Chen et al. 2017, Seo et al. 2017).  However, 
by definition this poses a challenge when the answer to a 
question is not explicitly stated in the source context para-
graph.  In other words, questions that require inference to 
ascertain implicit information are still a challenge. This is 
illustrated by several new datasets that require more sophis-
ticated reasoning, like tracking state changes in processes 
(ProPara), and a host of other knowledge and reasoning 
types (ARC).  An analysis on a subset of the ARC dataset 
suggests that a large proportion of questions (99/192, 52%) 
involve causal or physical knowledge (Boratko et al. 2018).  
An analysis by Crouse & Forbus (2016) suggests that 29% 
of the problems in 4th grade science tests require qualitative 
reasoning of the form QP theory provides.    
 The ProPara dataset (Dalvi et al. 2018) is the first large 
dataset of human generated natural language paragraphs 
about processes that are annotated with status, step, and lo-
cation of participating entities.  Along with the ProPara da-
taset, Dalvi et al. (2018) introduced two artificial neural net-
work models to track state changes: a system that uses bilin-
ear attention over sentences and an end-to-end system that 
uses bilinear attention over the entire paragraph. As of this 
writing, the two most successful models for ProPara en-
hance neural reading approaches with rules or knowledge 
graphs.   Tandon et al. 2018 characterized ProPara as a struc-
tured prediction task, using commonsense rules derived 
VerbNet to avoid unlikely answers. Das et al. 2018 achieved 
state of the art results by recurrently building dynamic 
knowledge graphs that track entity locations. Das et al. 2018 
also evaluated their system on a dataset of natural language 
recipes (Kiddon et al. 2018), which had previously been in-
terpreted with neural process networks that simulate recipe 
actions and their effects (Bosselut et al. 2018).  These recent 
papers suggest that commonsense knowledge and structured 
representations (e.g. in the form of knowledge graphs in Das 
et al. 2018 or domain-specific state predictors in Bosselut et 
al. 2018) are important for understanding the many complex 
aspects of procedural texts.  We use ProPara to explore the 
step semantics framework and to understand how it can sup-
port some of these additional aspects of process understand-
ing.  

Step Semantics 
Language is a blunt instrument.  The challenge of learning 
by reading is to assemble, from both the signal in texts and 
the reader’s preexisting knowledge, a reasonable extension 
of that reader’s knowledge.  Step semantics is a framework 
for specifying what a reader should learn from the language 
describing the steps of a process.  Importantly, language en-
ables people to intermingle continuous and discrete descrip-
tions, hence our drawing together continuous processes, 

discrete actions, and events to provide the representational 
capacity necessary. 
 We call our account step semantics for two reasons. First, 
it is about the steps in a process viewed as a sequence of 
operations or events.  (Operations, for recipes and proce-
dures, events for natural processes that can be decomposed, 
such as life cycles and the formation of rain.) Second, often 
the internal structure of a step relies on one or more contin-
uous processes, i.e. representable via the notion of process 
in qualitative process theory.  At a coarser grain of descrip-
tion, the continuous changes are summarized via step 
changes (Rickel & Porter, 1994). 

Ontology 
We assume that a natural language description of a process 
consists of a sequence of sentences.  The understanding pro-
cess must create a description of states and steps.  By state 
we mean an episode in a history (Hayes 1984), i.e. a set of 
propositional statements, including fluents, that is taken to 
hold over some time (instant or interval) describing a set of 
individuals.  By step, we mean an event, or a set of events, 
that describes what happens during the transition between 
its before state and after state.  The before/after relations im-
pose a sequential ordering on states.  This ordering can be 
cyclic, as in oscillations or life cycles.  There can be alter-
nate steps from a state, corresponding to events that either 
are alternatives to each other (e.g. bake in a microwave ver-
sus bake in an oven) or are occurring in parallel (e.g. the 
sprouting of legs and shrinking of its tale occurring at the 
same time in a tadpole’s maturing).   
 The relationship between sentences and steps can be com-
plicated.  In the simplest case, e.g. ProPara, each sentence is 
assumed to be a single step, each state has at most one step 
leading to it and at most one step leading from it, and the 
order of events is given by the order of sentences.  None of 
these assumptions hold more generally. The mapping be-
tween sentences and steps can be one to many.  In the other 
direction, a step can be spread across multiple sentences in 
language. The incremental nature of natural language is why 
learning by reading systems using QP theory rely on a 
frame-based equivalent notation (McFate et al. 2014).  In 
complex processes, e.g. recipes, steps can be undertaken in 
parallel (e.g. creating gravy while roasting a turkey), and can 
include multiple next steps (e.g. the reason to separate eggs 
is to do something different with the yolks versus the 
whites), and multiple previous steps (e.g. combining parts 
created by earlier steps).  The temporal order in the events 
being different from the sequence of sentences describing 
them is very common in fiction, but is also used in instruc-
tion as a motivation.  For instance, stories about why Hawaii 
caught a lucky break when Hurricane Lane dropped from a 
category 5 to a category 2 storm typically started with the 
good news and then described why this was such good news. 



 It should be clear from these complexities that under-
standing processes expressed in text, despite whatever pro-
gress is made on ProPara, remains a challenging problem.   

Features 
There are four fundamental kinds of steps: 
• Changes of existence: A step can create or destroy some-

thing. 
• Changes of property: A move step changes the location 

of something, for instance, and painting changes its 
color. Transformations, e.g. phase transformations such 
as boiling, change the type of an object.   

• Change of quantity: A quantity change step indicates that 
the given quantity has risen or fallen during the step.  
The continuous processes that are causing this are often 
implicit.  This is a useful thing to say if there are com-
peting continuous processes occurring during a step, 
since knowing the result on a parameter of interest pro-
vides information about the relative magnitudes of ef-
fect.  For example, evaporation from a bathtub is 
swamped by the change in mass from even a small 
stream of water flowing into it. 

• Occurrence of a sub-process: A subprocess step describes 
the changes wrought by some process occurring within 
the larger process being described.  For instance, if the 
water cycle is the process being described, there will 
typically be steps describing the roles of evaporation, 
condensation, and precipitation as part of that descrip-
tion. 

These four types are mutually exclusive.  As noted 
above, a single sentence may imply multiple steps, and a 
single step might be communicated by multiple sentences.  
A system with broad knowledge of the world will have 
representations encompassing multiple levels of detail and 
incorporating multiple perspectives (Falkenhainer & For-
bus, 1991).   This vocabulary of steps provides an interface 
layer between language and these representations, the spe-
cific level of detail and perspective depend on the level of 
detail in the natural language description.  For instance, 
consider a moving object that is part of a larger mechanical 
system.  Its movement might be simply described as a sin-
gle change in property (i.e. location) step, or it may be de-
scribed as a sub-step in the larger, more detailed descrip-
tion of the entire system. 
 Inertia is assumed for existence and property changes, i.e. 
if something exists then it continues to do so, until explicitly 
terminated or changed by some other step.  Quantity 
changes, on the other hand, are subject the operations of 
continuous processes – one cannot melt chocolate, for ex-
ample, and then leave it on the counter for an hour and as-
sume it will remain molten.   
 Part of the hierarchy of process descriptions arises from 
hierarchies in place descriptions.  In describing 

photosynthesis, for example, chloroplasts might be de-
scribed as “in the leaf”.  A common heuristic is that the lo-
cation of a process has to include the location of all of the 
constituents being used in it.  So, the creation of sugar hap-
pens in the leaves, while the process as a whole must also 
include the roots and stems, since they collect and transport 
water that are used in the process.   
 When fluids are involved, we have found that both the 
classic piece of stuff and contained fluid ontologies (Hayes, 
1984) are useful.  In linear (cyclic or acyclic) steps, the mov-
ing liquid can be characterized in terms of molecular collec-
tions (Collins & Forbus, 1987), i.e. a specialization of the 
piece of stuff ontology such that the fluid moving is consid-
ered to be large enough to have macroscopic properties (e.g. 
temperature and pressure in moving water or air), but so 
small as to maintain coherence (e.g. not split at a fork in a 
piping system).   

Connection to Language 
We use FrameNet as a bridge between continuous processes 
and language (McFate & Forbus, 2016). 
 We note that there are many complexities in carving up 
constituent processes in language.  For example, “Roots ab-
sorb water and minerals from the soil.”  Should this be 
viewed as two separate absorption processes, one for water 
and one for minerals?  Without either additional knowledge 
or additional explanation, it is impossible to tell.  Liquids 
are often used for transporting other things, in suspension or 
solution, in biological and engineered systems, and if the 
next sentence continues with “This combination of water 
and mineral flows…”, then this expectation is satisfied.  But 
in general there will be multiple possible interpretations 
which need to be maintained (or regenerated on backtrack-
ing) to understand such explanations.  We begin by examin-
ing how simple steps can be recognized in terms of the verbs 
used in a sentence, then discuss how the semantics of verbs 
linked to processes can be used to extract additional infor-
mation about a step. 
Creation Steps: These are represented by the FrameNet 
frame FN_Creating and the linked Cyc event type Crea-
tionEvent. For biological creatures, the corresponding 
linked frames are FN_Giving_birth and BirthEvent.  
We note that FrameNet does not treat giving birth as a sub-
frame of creating, but since Cyc does include BirthEvent 
as a specialization of CreationEvent, we treat this as a 
subcategory.  The lexemes for this frame include create, as-
semble, form, formation, generate, make, produce, and sev-
eral others. 
Destruction Steps: These are represented by the FrameNet 
frame FN_Destroying, and the linked Cyc event type De-
structionEvent.  There are subframes for biological 
creatures, e.g. FN_Killing, KillingByOrganism. 



Property Change Steps: There are quite a variety of these, 
e.g. FN_Cause_change, which can apply to names, reli-
gious beliefs, political climates, and so on.  Similarly, 
FN_Change_of_phase_scenario covers phase changes 
such as freezing, boiling, and solidifying.   
Quantity Change Steps: These include frames such as 
FN_Change_of_temperature, which covers verbs such 
as heat, warm, cool, chill, and refrigerate, and 
FN_Change_position_on_a_scale, which covers verbs 
such as rise, balloon, fluctuate, increase, etc.   
Subprocess/Event Steps: Examples include FN_Motion, 
FN_Fluidic_motion, and FN_Giving.  The role relations 
describe changes in the participants, e.g. prepositional 
phrases involving “from” and “to” identify the source and 
destination of something whose physical location or owner-
ship changes.   
 Part of the complexity of natural language understanding 
of process descriptions comes from unpacking steps from 
the semantic interpretation.  Another source of complexity 
is assembling a set of plausible temporal relationships 
among the steps.  ProPara attempts to simplify these issues 
by treating each sentence as representing a single step, and 
assuming a strict identification of order of sentences with 
order of events that they describe.  (An exception consists 
of cycles, where language like “continuing the cycle” indi-
cates the existence of a cycle, but this lies outside the se-
mantic representations stipulated in ProPara.) 

Examples 
To illustrate how step semantics can be used for natural lan-
guage understanding, we use examples from the domains of 
recipes and ProPara. 

Recipes 
Consider the following recipe for French toast1: 

1. In a small bowl, combine, cinnamon, nutmeg, and 
sugar and set aside briefly. 

2. In a 10-inch or 12-inch skillet, melt butter over me-
dium heat. Whisk together cinnamon mixture, 
eggs, milk, and vanilla and pour into a shallow con-
tainer such as a pie plate. Dip bread in egg mixture. 
Fry slices until golden brown, then flip to cook the 
other side. Serve with syrup. 

 
Despite being short and simple, this recipe includes several 
different types of steps (including some that are not explic-
itly stated) and is written in such a way that we cannot rely 
on steps being properly enumerated or being separated into 
distinct sentences.  In the first step, the three dry ingredients 

                                                 
1 https://www.foodnetwork.com/recipes/robert-irvine/french-toast-recipe-
1951408 

(cinnamon, nutmeg, and sugar) undergo a mixing process 
which makes them individually irrecoverable.  The second 
numbered step includes several actions (melting, whisking, 
pouring, dipping, frying, and flipping).  While melting, but-
ter undergoes changes in property (i.e. phase) and quantity 
(i.e. temperature).  In whisking, individual wet and dry in-
gredients are combined and (in the same sentence) are 
poured into another container.  In the bread-dipping step, in-
gredients are not destroyed, but there are changes in prop-
erty (i.e. moisture and location).  In the following sentences, 
multiple steps (frying, flipping) are combined into one sen-
tence.  In frying and flipping, there is a qualitative limit point 
(“until golden brown”) and there is an implicit change of lo-
cation before the final serving step. 
 

Lexeme FrameNet Frames Entities involved 
Combine FN_Amalgamation,  

FN_Creation 
Cinnamon, nutmeg, 
sugar 

Melt FN_Change_of_tem-
perature, 
FN_Change_of_phas
e_scenario 

Butter 

Whisk FN_Self_motion,  
FN_Amalgamation,  
FN_Creation 

Cinnamon mixture, 
eggs, milk, vanilla 

Dip FN_Dunking Bread, egg mixture 
Fry FN_Apply_Heat, 

FN_Change_of_tem-
perature, 
FN_Amalgamation 

Slices, (melted) 
butter 

Flip FN_Move_in_place Bread 
 

Table 1: Lexemes, frames, and entities for French toast 
recipe. 

 
 This recipe also exhibits a subtle temporal structure.  
Melting the butter does not need to happen before mixing 
ingredients and dipping bread, but all of those things need 
to happen before frying.  These constraints cannot be in-
ferred by the order that each of the steps is introduced, since 
each step does not necessarily depend on all steps previously 
mentioned.  Instead, they can be inferred by reasoning about 
the entities involved in each step and their properties.  Table 
1 shows how individual lexemes and frames can be used to 
characterize each step.   
 The following recipe for roasted brussels sprouts2 illus-
trates another complex temporal structure: 

1. Preheat oven to 400 degrees F. 
2. Cut off the brown ends of the Brussels sprouts and 

pull off any yellow outer leaves. Mix them in a 
bowl with the olive oil, salt and pepper. Pour them 

2 https://www.foodnetwork.com/recipes/ina-garten/roasted-brussels-
sprouts-recipe2-1941953 



on a sheet pan and roast for 35 to 40 minutes, until 
crisp on the outside and tender on the inside. Shake 
the pan from time to time to brown the sprouts 
evenly. Sprinkle with more kosher salt (I like these 
salty like French fries), and serve immediately. 

 Unlike the French toast recipe, this recipe describes steps 
such that each step necessarily begins before steps that are 
described later.  However, the roasting step is supposed to 
temporally subsume the pan-shaking step (even though the 
recipe lacks a phrase like “while the sprouts roast…” to ex-
plicitly indicate that one step occurs during another).  One 
way to make this inference is to identify the goal of pan 
shaking as a color property change of the sprouts (i.e. 
“browning”) that is the ending condition for the roasting 
step. 
 These recipes are both relatively short and straightfor-
ward.  However, they illustrate that (1) steps are not neces-
sarily executed in the order that they are described, (2) that 
steps that are described with a single lexeme can denote 
multiple types of change (e.g. temperature and phase), and 
(3) that understanding the temporal constraints between 
steps hinges on the semantics of the processes (e.g. roasting, 
browning) and entities involved (e.g. pan). 

ProPara 
ProPara consists of 488 paragraphs about processes and a 
set of parameterized questions about the participants in each 
process paragraph.  These questions concern when an entity 
is created, destroyed, or moved.  Consider the following par-
agraph from the ProPara dataset:  
“Chloroplasts in the leaf of the plant traps light from the sun. 
The roots absorb water and minerals from the soil. This 
combination of water and minerals flows from the stem into 
the leaf. Carbon dioxide enters the leaf. Light, water and 
minerals, and the carbon dioxide all mix together. This mix-
ture forms sugar (glucose) which is what the plant eats. Ox-
ygen goes out of the leaf through the stomata.” 
After reading this paragraph, a system ought to be able to 
answer questions like this one: 
Q: Where is sugar produced? 
A: In the leaf. 
Our approach to answering these questions is to start with a 
general-purpose semantic parser, using a large knowledge 
base (NextKB3) and rich semantic interpretations based on 
Discourse Representation Theory (Kamp & Reyle, 2013), 
and use training data to customize the interpretation process 
for question answering.  We call this analogical Q/A train-
ing. This approach has been used before on Geoquery 
(Crouse et al. 2018a), getting state of the art results with less 
data than typically required, and learning to recognize 

                                                 
3 NextKB integrates the OpenCyc ontology with FrameNet contents, a large 
lexicon, and support for qualitative and analogical reasoning.  It will be 
available as a creative commons attribution resource shortly. 

physical processes in paragraphs from science test questions 
(Crouse et al. 2018b).  We combine this approach with step 
semantics to learn entailments from ProPara training data.  
The rest of this section describes how we do that and our 
preliminary results. 
 Analogical Q/A training works by taking natural lan-
guage questions and some form of answers, and produces 
cases (i.e. sets of logical statements) that are retrieved and 
used in subsequent question answering.  Typically natural 
language answers are provided, but here we use the table 
format provided by AI2, translated into predicate calculus, 
as shown in Figure 1.  In training, the system is learning to 
map the FrameNet/Opencyc semantics it constructs to in-
stances of events from the categories CreationEvent, De-
structionEvent, and MovementEvent.  We call it analogical 
Q/A training because what is created during the learning 
process are query cases, which are simple cases that provide 
a bridge between the logical forms produced by language 
and representations about processes.  Queries to answer 
questions are generated by applying and composing query 
cases via analogy to interpret new texts.   

 
(isa participant123 Participant) 
(isa event123 CreationEvent) 
(outputsCreated event123 participant123) 
(outputsCreatedLocation event123 tolocation123) 

 
(isa participant123 Participant) 
(isa event123 DestructionEvent) 
(inputsDestroyed event123 participant123) 

 
(isa participant123 ProParaParticipant) 
(isa fromlocation123 Location) 
(isa tolocation123 Location) 
(isa event123 MovementEvent) 
(objectMoving event123 participant123) 
(fromLocation event123 fromlocation123) 
(toLocation event123 tolocation123)

 
Figure 1. Target logical form for each possible state 

change. 
The process of constructing query cases during training 
works like this: First, the NLU system generates a set of syn-
tactic and semantic choices, representing the space of possi-
ble interpretations for each sentence.  Second, mappings be-
tween this space of interpretations and the target semantics 
(i.e. one of the three choices in Figure 1) are constructed.  
This involves using structural relations in the KB to find 
paths between concepts and relations.  For example, here is 
a path that indicates that pulling is a kind of motion: 



PullingAnObject → CumulativeEventType → 
Movement-Rotation → MovementEvent. 

Role relations from the semantic interpretation are mapped 
to roles in the target logical form by using inheritance rela-
tions involving predicates, e.g.  

objectActedOn → EventOrRoleConcept →  
objectMoving. 

Typically there will be multiple potential matches, and these 
are filtered and scored based on constraints from Gentner’s 
(1983) structure-mapping theory (e.g.1:1 mappings, prefer 
more systematic structures), albeit with re-representation 
occurring as part of the processing, similar to (Fan et al. 
2009).  The final step constructs query cases from these con-
nections, and stores them into a case library for subsequent 
retrieval during Q/A.   
 Question-answering during testing proceeds as follows.  
Each test paragraph is read sentence by sentence.  For each 
sentence, for each participant p, the following three catego-
ries of queries are asked: (Cat-1) Is p created (destroyed, 
moved) in the process? (Cat-2) When is p created (de-
stroyed, moved)? (Cat-3) Where is p created (destroyed, 
moved from/to).  These queries are processed by using ana-
logical retrieval from the case library constructed during 
training. The best query cases are instantiated and ranked 
according to how well they match the sentence semantics. 
The consequents of the highest ranked query cases are used 
to predict the state change of the queried participant. Finally, 
all state changes are aggregated and the following common 
sense rules are applied to propagate the states of each par-
ticipant: 

1. Inertia: states are propagated, both forward and 
backwards, until a new state change occurs. 

2. Collocation: If a participant X is converted to par-
ticipant Y (X is destroyed when Y is created), and 
the position of Y is not known, then we assign the 
previous position of X to Y. 

The combination of the queries and the common sense rules 
are used to generate a state change grid, in the format used 
by AI2, to compare against their answers.  Table 2 compares 
our results on this task with the following models: ProComp 
(Clark et al. 2018), ProLocal, ProGlobal (both from Dalvi et 
al. 2018), ProStruct (Tandon et al. 2018), and KG-MRC 
(Das et al. 2018). Results are displayed as F1 scores for each 
category, as well as their respective macro-average. The 
ProStruct metric is different as the task was formulated as a 
structured prediction task. 
 While better than the prior rule-based model on two out 
of three categories, our approach does not yet out-perform 
the artificial neural network models, although it does better 
than ProLocal on two out of three categories, and better than 
all of them on Cat-2 questions. We believe there are at least 
two reasons for this.  The first is the paucity of information 
extracted in cases currently, which does not provide enough 
discrimination during analogical retrieval, considerably 

reducing our recall score.  We plan on exploiting more of 
the ontology and FrameNet information to address this.  The 
second factor is that we were neither using coreference res-
olution nor the full set of commonsense rules used by the 
AI2 systems.    
 
 

 Model Cat-1 Cat-2 Cat-3 Macro 
averaged 

Rule 
Based 

ProComp  57.14 20.33 2.40 26.62 

Artificial 
Neural 

 Networks 

ProLocal 62.65 30.50 10.35 34.50 
ProGlobal 62.95 36.39 35.90 45.08 
ProStruct - - - 53.70* 
KG-MRC 62.86 40.00 38.23 47.03 

Step  
Semantics  

Our Model 49.50 43.92 17.13 36.85 

 
Table 2. Comparison between models on ProPara dataset. 
Displayed values are F1 scores for each category, which are 
then macro-averaged. *ProStruct uses a different metric 
from previous papers. 

Discussion 
In this paper we propose a framework for representing state 
changes that occur in natural language descriptions of pro-
cesses and procedures.  Our analysis of recipes and learning 
experiment with process paragraphs suggests that this 
framework is capable of capturing some information from 
texts about processes. 
 We see several important lines of future work.  First, we 
need to explore the ideas for improving ProPara perfor-
mance noted above, to see how far we can push analogical 
Q/A training.  It would not surprise us to find that exploiting 
additional linguistic and world knowledge during compre-
hension would lead to significant improvements.  Second, 
we need to integrate step semantics into our learning by 
reading system, thereby enabling it to handle processes and 
procedures that go beyond ProPara, such as recipes includ-
ing explicit cycles, forks, and joins, as well as moving be-
yond the 1:1 sentence/step model.  These lines of work will, 
we hope, contribute to an account of human-level reasoning 
for question-answering about processes and procedures. 
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Abstract

Domain-specific community question answering is becom-
ing an integral part of professions. Finding related questions
and answers in these communities can significantly improve
the effectiveness and efficiency of information seeking. Stack
Overflow is one of the most popular communities that is being
used by millions of programmers. In this paper, we analyze
the problem of predicting knowledge unit (question thread)
relatedness in Stack Overflow. In particular, we formulate the
question relatedness task as a multi-class classification prob-
lem with four degrees of relatedness.
We present a large-scale dataset with more than 300K pairs.
To the best of our knowledge, this dataset is the largest
domain-specific dataset for Question-Question relatedness.
We present the steps that we took to collect, clean, process,
and assure the quality of the dataset. The proposed dataset
on Stack Overflow is a useful resource to develop novel solu-
tions, specifically data-hungry neural network models, for the
prediction of relatedness in technical community question-
answering forums.
We adapt a neural network architecture and a traditional
model for this task that effectively utilize information from
different parts of knowledge units to compute the relatedness
between them. These models can be used to benchmark novel
models, as they perform well in our task and in a closely sim-
ilar task.

Introduction

Community question answering (cQA) is becoming an inte-
gral part of professions allowing users to tap on crowds’ wis-
dom and find answers to their questions. Techniques, such
as answer summarization (Chan et al. 2012; Xu et al. 2017;
Demner-Fushman and Lin 2006; Liu et al. 2008), ques-
tion answer matching (Tan et al. 2016; Shen et al. 2015)
and question semantic matching (Bogdanova et al. 2015;
Wu, Zhang, and Huang 2011; Nakov et al. 2017), have been
devised to improve users’ experience by accelerating finding
relevant information and enhancing the information presen-
tation to users.

We refer to the collection of a question along with all its
answers as a knowledge unit (KU). Finding related knowl-
edge unit in these communities can significantly improve the

Copyright c� 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

effectiveness and efficiency of information seeking. It allows
users to navigate between knowledge units, prune unrelated
knowledge units from the information search space. Find-
ing related knowledge units can be quite time-consuming
due to the fact that even the same question can be rephrased
in many different ways. Therefore automated techniques to
identify related knowledge units are desirable.

In this work, we describe the task of prediction of related-
ness in Stack Overflow, the most popular resource for topics
related to software development. Knowledge in Stack Over-
flow is dispersed and developers usually need to explore sev-
eral related knowledge units to gain insights into the prob-
lem at hand and possible solutions. Stack Overflow has be-
come an indispensable tool for programmers; about 50 mil-
lion developers visit it monthly, and over 85% of users visit
Stack Overflow almost daily.1 The reputation of this we-
biste has attracted many developers to actively participate
and contribute to the forum. A study showed that most ques-
tions on Stack Overflow are answered within 11 minutes of
posting them (Mamykina et al. 2011).

We formulate the problem of identification of related
KUs, as a multi-class classification problem by breaking re-
latedness into multiple classes. More precisely, a model has
to classify the degree of relatedness of two KUs into one of
four classes: duplicate, direct, indirect, or isolated.

Predicting relatedness in Stack Overflow poses an inter-
esting challenge because in addition to natural text, KUs
contain a huge amount of programming terms which is of
a different nature, and like many other cQA websites, differ-
ent users exhibit different discursive habits in posting ques-
tions and answers; e.g., some provide minimal details in
their questions or answers, while some tend to include a siz-
able amount of information.

We create a large, reliable dataset for training and test-
ing models for this task. It contains more than 300K knowl-
edge unit pairs annotated with their corresponding related-
ness class. We report all steps to collect, clean, process, and
assure the quality of the dataset. We rely on URL sharing in
Stack Overflow to decide on the relatedness of KUs, as that
programmers facing a specific problem are the best ones to
judge the degree of relatedness of questions. We verified the

1Stack Overflow 2018 Developer Survey, https:
//insights.stackoverflow.com/survey/2018/



reliability of our approach by conducting a user study.
To establish a baseline for future evaluations, we present

two successful neural network and traditional machine
learning models. we adapt a lightweight Bidirectional Long
Short-term Memory (BiLSTM) model tailored to our pro-
posed dataset. We also investigate so-called soft-cosine sim-
ilarity features in a Support Vector Machine (SVM) model.
To investigate the adequacy of these models, we evaluate
them on a closely related duplicate detection task. Our ex-
periments show that our models outperform the state-of-the-
art techniques in a duplicate detection task, suggesting that
our models are potent benchmarks for our task.
Contributions. This paper makes the following contribu-
tions.
• We present the task of question relatedness in Stack Over-

flow, with four degrees of similarity.
• We present a reliable, large dataset for knowledge units

relatedness in Stack Overflow.
• We adapt a corpus-inspired BiLSTM architecture for re-

latedness detection.
• We evaluate the performance of SVM models with several

hand-crafted features to predict the relatedness in Stack
Overflow.

Related Work

There are several tasks related to identifying semantically
relevant questions such as Duplicate Question Detection
(DQD), Question-Question similarity, and paraphrase iden-
tification.

Perhaps, one of the best-known general-domain DQD
dataset is Quora 2 with more than 400K question pairs.
Quora dataset was released on Kaggle competition platform
in January 2017. Most of the questions on Quora are asked
in one piece without any further description and are not re-
stricted to any domain. Another well-known DQD dataset
is AskUbuntu (Rodrigues et al. 2017). Similar to our Stack
Overflow dataset, AskUbuntu dataset is acquired from Stack
Exchange data dump 3 (September 2014). The differences
are that AskUbuntu dataset only provides binary classes
(DQD), it is 11 times smaller than our proposed dataset
and only consist of titles and bodies in a concatenated form.
Many solutions are proposed to address the DQD problem.
(Bogdanova et al. 2015) utilized a convolutional neural net-
work (CNN) to address the DQD problem on AskUbuntu
and Meta datasets. (Silva et al. 2018) applied the same model
on the cleaned version of datasets and showed that after re-
moving Stack Exchange clues, the results drop by 20%. A
more advanced architecture introduced in (Rodrigues et al.
2017) on AskUbuntu and Quora datasets. This model can
be considered as the state-of-the-art model on AskUbuntu
dataset which utilizes the combination of a MayoNLP model
introduced in (Afzal, Wang, and Liu 2016) and a CNN model
introduced in (Bogdanova et al. 2015). We use the same
AskUbuntu dataset to evaluate our models on a secondary

2https://goo.gl/kWCcD4
3https://askubuntu.com/

dataset. There are two major differences between our ap-
proach and the works in (Bogdanova et al. 2015) and (Ro-
drigues et al. 2017). First, we improve the performance of
our model by computing the distance between title, body,
and answers of the two knowledge units, whereas (Bog-
danova et al. 2015) and (Rodrigues et al. 2017) only com-
pute the similarity between title+body of the two knowledge
units. Second, the hybrid architectures developed by (Ro-
drigues et al. 2017) is a complex CNN model along with
30k dense neural network followed by two hidden multi-
layers. However, our model uses shared layers bidirectional
LSTMs with the limited number of parameters which results
in a lightweight architecture.

Question-Question similarity introduced in subtask B of
SemEval-2017 Task 3 on Community Question Answer-
ing 4 (Nakov et al. 2017) is one of the closest topics to
our task. Although this task contains multi-classes of relat-
edness between two questions (i.e., PerfectMatch, Related,
Irrelevant), unlike our task, the problem is formulated as a
re-ranking Question Question+Thread Similarity task. Vari-
ous features were investigated to address Question-Question
similarity introduced in subtask B of SemEval-2017 Task 3
such as neural embedding similarity features (Goyal 2017)
and Kernel-based features (Filice, Da San Martino, and
Moschitti 2017) (Galbraith, Pratap, and Shank 2017). The
winner of this task is (Charlet and Damnati 2017) which
utilized soft-cosine similarity features within a Logistic Re-
gression model. Note that we employ the similar soft-cosine
features in our traditional SVM model.

Duplicate detection between questions on Stack Overflow
has been studied before. An approach named DupPredic-
tor takes a new question as an input and tries to find po-
tential duplicates of the question by considering multiple in-
formation sources (i.e., title, description and tags) (Zhang et
al. 2015). DupPredictor computes the latent topics of each
question by using a topic model. For each pair of questions,
it computes four similarity scores by comparing their titles,
descriptions, latent topics, and tags and then combined to-
gether to result in a new similarity score. In another simi-
lar work, (Xu et al. 2016) introduced a dataset for knowl-
edge unit relatedness and proposed a convolutional neural
network for predicting the relatedness. Unfortunately, the
limited number of knowledge units (KUs) were collected
heuristically and tend to have low quality. The presented
dataset does not cover different parts of a knowledge unit,
instead, it merges title+body into a single sequence. Clearly,
mixing all parts together does not provide an opportunity to
perform an experiment on separate parts of KUs indepen-
dently. Moreover, this dataset contains some extra informa-
tion (signals) which leads to a biased dataset. As explained
in “Data Quality” section, we remove these unwanted clues
from the data.

Description of The Dataset

Questions in the real world are supposed to have more rela-
tionships than only duplicate or non-duplicate. For example,

4http://alt.qcri.org/semeval2017/task3/



one question in Stack Overflow talks about The time com-
plexity of array function5, while another question is about
How to find time complexity of an algorithm6. These two
questions are linked by Stack Overflow users as related but
not duplicate.

Relatedness Between Knowledge Units

Knowledge units often contain semantically-related knowl-
edge, and thus they are linkable for different purposes, such
as explaining certain concepts, approaches, background
knowledge or describing a sub-step for solving a complex
problem (Ye, Xing, and Kapre 2016). Figure 1 shows an
example of how knowledge units are linked to each other
on Stack Overflow. One of the answers of a knowledge unit
(short for KU1) guides the asker to refer to another knowl-
edge unit (short for KU2) which is helpful to solve the prob-
lem. These two knowledge units are linked through URL
sharing. URL sharing is strongly encouraged by Stack Over-
flow to link related knowledge units (StackOverflow 2018).
A network of linkable knowledge units constitutes a knowl-
edge unit network (KUNet) over time through URL shar-
ing (Ye, Xing, and Kapre 2016). Relationships between any
two knowledge units in KUNet can be divided into four
classes: duplicate, direct, indirect and isolated (Xu et al.
2016). Duplicate KUs discuss the same question and can be
answered by the same answer. Direct relatedness between
KUs means that the content of one KU can help solve the
problem in the other KU, for example, by explaining cer-
tain concepts, providing examples, or covering a sub-step
for solving a complex problem. Indirect relatedness means
that contents of KUs are related but they are not immediately
applicable to each other. Isolated KUs are not semantically
related. The order of relatedness of each class is duplicate >
direct > indirect > isolated.

Dataset Creation

Figure 2 depicts the steps that we took to create a relatedness
dataset. We describe each step below.
Extract preliminary data from Stack Overflow data dump.
We mainly focus on Java-related knowledge units on Stack
Overflow because Java is one of the top-3 most popular tags
in Stack Overflow 7. Moreover, questions with this tag not
only are about Java programming language, but they cover a
broad spectrum of topics that Java technology provides, such
as web and mobile programming, and embedded systems.
First, we extracted all knowledge units tagged by “Java”
from Stack Overflow data dump. Next, all duplicate and di-
rect links between knowledge unit pairs are extracted from
Stack Overflow data dump.
Knowledge unit network. Knowledge unit network (KUNet)
is a network in which each KU is represented as a node and
an edge between two nodes exists if a duplicate or direct
link exists between the two corresponding KUs. We con-
struct a KUNet based on the extracted links from a table
named PostLinks from Stack Overflow data dump.

5https://goo.gl/dJwmuE
6https://goo.gl/S81BjE
7https://stackoverflow. com/tags

Identifying duplicate and direct pairs As shown in Fig-
ure 2(a), the link between (A and B) and (B and C) are
labeled as a duplicate. We also consider a duplicate link be-
tween A and C by transitivity. We apply transitivity rule
until no new duplicate relation is found among knowledge
units.
Identifying indirect and isolated pairs Four types linkable
KU pairs are extracted from the KUNet based on their def-
initions. Indirect KU pairs are pairs of nodes that are indi-
rectly connected in the network. More specifically, they are
connected in the KUNet with a certain range of distance (in
this case, length of shortest path 2 [2,5]), but the relation-
ship between them belongs neither to duplicate nor direct.
Finally, isolated KU pairs are pairs of nodes that are com-
pletely disconnected in the network.

Statistical Characteristics of the Dataset

Using the steps described in the previous section we cre-
ated a dataset. Table 1 depicts the statistical characteristics of
the dataset. The dataset contains 160,161 distinct knowledge
units and 347,372 pairs of knowledge units with four types
of relationships. Among all knowledge units, 117, 139 (i.e.,
73%) of them have at least one code snippet in their body.
The average number of words in code snippets in body is
118.46. There are 318, 491 answers in our dataset and each
knowledge unit has 1.99 answers on average. 140, 122 (i.e.,
87%) of knowledge units contain at least one answer and
90, 672 (i.e., 57%) of them contain one accepted answer.
Moreover, 96, 707 (60%) of knowledge units have at least
one code snippet in their answers which means that more
than half of solutions are code related.
Training, Development, and Test Sets We split the dataset
into three parts, train, development, and test, to facilitate the
development, and evaluation of classification models. We as-
signed 60% of knowledge units to train set, 10% to devel-
opment set, and 30% to test set. To have the same number
of KU pairs for each class, by using under-sampling tech-
niques, we make this dataset balanced.

Table 1: Brief statistics of the dataset
Scope Indicator Size

# of distinct KUs 160,161Whole KU # of four types of KU pairs 347,372
Title avg. # of words in title 8.52

avg. # of words in body(exclude code snippets) 97.02
# of distinct KUs whose body has at least one code snippet 117,139(73%)
avg. # of code snippets in one body 1.46Body

avg. # of words in single code snippet in one body 118.46
# of distinct answers 318,491
avg. # of answers within single KU 1.99
# of distinct KUs contain at least one answer 140,122(87%)
# of distinct KUs contain an accepted answer 90,672(57%)
# of distinct KUs whose answers has at least one code snippet 96,707(60%)
avg. # of words in an answer (exclude code snippets) 68.39
avg. # of code snippets within one answer 0.60

Answers

avg. # of words in single code snippet 81.98

Instructions to Use The Dataset

Table 2 presents the overall structure of our dataset.
There are 24 attributes in our dataset for each pair of
knowledge units. The first 23rd attributes include all the
content of the first and second knowledge units, they
are id, title, body, accepted answer, answers, and tags.
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Figure 1: A pair of linkable knowledge units on Stack Overflow
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Figure 2: Overview of the data collection process

The last attribute (i.e., Attr. Id =24) represents the re-
lationship between the two knowledge units (i.e., <
KU1,KU2, Relationship >). More information is avail-
able at https://anonymousaaai2019.github.io

Table 2: The structure of the dataset
Attr. Id Attr. Name Attr. Description
1 Id KU Pair (< KU1,KU2 >) Id
2/13 q1/2 Id Id of KU’s Question on SO
3/14 q1/2 Title KU’s Title
4/15 q1/2 Body The text of KU’s Body (Exclude Code Snippets)
5/16 q1/2 BodyCode Code Snippets in KU’s Body
6/17 q1/2 AcceptedAnswerId Ids of KU’s Accepted Answers on SO
7/18 q1/2 AcceptedAnswerBody The text of KU’s Accepted Answer (Exclude Code Snippets)
8/19 q1/2 AcceptedAnswerCode Code Snippets in KU’s Accepted Answer
9/20 q1/2 AnswersIdList Ids of KU’s Answers on SO
10/21 q1/2 AnswersBody The text of KU’s Answers (Exclude Code Snippets)
11/22 q1/2 AnswersCode Code Snippets in KU’s Answers
12/23 q1/2 Tags Tags of KU
24 Class Relationship (i.e., duplicate, direct, indirect or isolated)

Quality Control

Data Cleaning

We perform three operations to further improve the quality
of our dataset. Natural language and programming language
snippets are mixed in the text. To deal with this, first, we
extract programming language snippets (aka. code snippets)

from HTML formatted text by using the regular expression
hpreihcodei(.⇤?)h/codeih/prei Note that, it is possible that
multiple code snippets exist in body or multiple answers of
one knowledge unit, so we store them into a list. Next, since
text attributes (e.g., body, answer body) provided by Stack
Overflow data dump are in HTML format, we clean the con-
tent by removing HTML tags and escape characters, e.g.,
hpih/pi, &#xA; and &lt;. Second, we observe and remove
some extra information added by Stack Exchange API that
can be considered as a signal. For example, at the begin-
ning of the body content of some duplicate and direct ques-
tions, it includes the string Possible Duplicate:, fol-
lowed by the topic content of the possible duplicate ques-
tion. The inclusion of signals in training can result in a bi-
ased dataset and unreliable models. This problem was first
observed by (Silva et al. 2018) in AskUbuntu dataset.

Third, we found that there is an overlap between some
duplicate and direct links in the Stack Overflow data dump,
since it provides knowledge unit pairs as long as two knowl-
edge units are linked through URL sharing. To solve this, if
a link belongs to duplicate and direct at the same time, we
label it as a duplicate.

User Study

This dataset is extracted from Stack Overflow forum that is
managed and maintained by volunteer domain experts who
serve as moderators and contributors. Links between knowl-
edge units (i.e., Stack Overflow posts) are validated in a
crowdsourced process by domain experts. To asses the re-
liability of the crowdsourced process and our data collection
procedure, we perform a user study. We ask three experts
(who are not authors of this paper) to label relationships be-
tween pairs of knowledge units that we have in our dataset.
The participants analyze a statistically significant sample



size (i.e., 96 pairs) that is representative of the population of
knowledge units in our dataset (at 95% confidence level, and
10% margin or error). Each participant can provide his/her
assessment of the degree of relatedness of two knowledge
units in a 4 point Likert scale: 1 (unrelated/isolated), 2 (indi-
rect), 3 (direct), and 4 (duplicate). The user study highlights
that the participant labels are the same as the labels in our
dataset 82% of the time. The average absolute difference be-
tween the Likert scores and the labels in our dataset is only
0.2 (out of 4). This highlights that the links in our dataset are
of high-quality.

Method

In this section, we describe models to predict relatedness
between knowledge units. We extensively explore different
neural network and traditional models for this task and re-
port the best-performing models. First, we investigate a BiL-
STM architecture which progressively learns and compares
the semantic representation of different parts of two knowl-
edge units. The description of our model is presented in the
next section. We then compare the BiLSTM model with a
support vector machine model. We also apply these models
to a closely similar task, duplicate detection in AskUbuntu,
and compare the results with the state-of-the-art models in
that task.

Data Pre-processing

We apply some simple pre-processing steps on all text
parts, Title, Body and Answers. Since there are many
technical terms in Stack Overflow, we apply more specific
pre-processing steps: First, we split words with punctuation
marks. For example, javax.persistence.Query
javax query changes to javax persistence
Query javax query. Then, we split camel case words,
for example, EntityManage is changed to Entity
Manage. In the end, we take several standard steps in pre-
processing data including: normalizing URLs and numbers,
removing punctuation marks and stop-words, and changing
all words to lowercase.

LSTM Model

We use bidirectional long short-term memory (BiLSTM)
(Hochreiter and Schmidhuber 1997) as a sentence encoder
to capture long-term dependencies in forward and backward
directions. In a simple form, an LSTM unit contains a mem-
ory cell with self-connections, as well as three multiplica-
tive gates to control information flow. Given input vector xt,
previous hidden outputs ht�1, and previous cell state ct�1,
LSTM units operate as Figure 3, where it, ft, ot are input,
forget, and output gates, respectively. The sigmoid function
�() is a soft gate function controlling the amount of infor-
mation flow. Ws and bs are model parameters to learn.

Figure 4 describes the overall architecture of the BiL-
STM model (DOTBILSTM). Unlike previous studies (i.e.
(Rodrigues et al. 2017)(Bogdanova et al. 2015)), this model
utilizes the information in Title, Body and Answers parts
of each knowledge unit. Each word (wi) is represented as
a vector, w 2 Rd , looked up into an embedding matrix,

X =


xt

ht�1

�

it = �(WiXX +Wicct� 1 + bi)

ft = �(WfXX +Wfcct� 1 + bf )

ot = �(WoXX +Wocct � 1 + bo)

ct = ft � ct�1 + it � tanh(WcXX + bc)

ht = ot � tanh(ct)

Figure 3: LSTM Unit

E 2 Rd⇥|V |. A shared layer BiLSTM as a sentence encoder
takes all the six inputs, embeds and transforms them into
fixed-sized vectors. Then in order to compute the distance
between each two knowledge units, we compute the inner
dot product between all the three representations of the first
knowledge unit and all three representations of the second
knowledge unit. As a result, it maps a pair of knowledge
units into a low dimensional space, where their distance is
small if they are similar. In the next step, we concatenate
computed values together. Our results show that concatenat-
ing the BiLSTM representations at the last layer increases
the performance slightly. We feed these values to a fully-
connected layer followed by a ReLU activation function, a
dropout layer and then a SoftMax output layer for classifica-
tion. The objective function is the Categorical cross-entropy
objective over four class target labels.

Figure 4: Main architecture of DOTBILSTM

Implementation Details (DOTBILSTM)

This section describes implementation details which are em-
pirically chosen after running several models with different
values and keeping the one that gives us the best results in
the validation set.



We initialize word embeddings with pre-trained
GloVe (Pennington, Socher, and Manning 2014) vec-
tors of size 300. Compared to pre-trained Google news
word2vec (Mikolov et al. 2013a) and word embedding
trained on Stack Overflow, GloVe performed slightly better
in this task. We choose the size of each sentence based on
the average size over the training set. Titles are truncated
or padded to 10 words, bodies to 60 words and answers to
180. BiLSTMs with 128 units is used as the encoder. In
our experiments, we observed that using shared parameters
for BiLSTMs boosts the model. The network uses Adam
optimizer (Kingma and Ba 2014), and the learning rate
is set to 0.001. The last layer is a dense layer with ReLu
activation and 50 units. In order to have a better training and
force the network to find different activation paths which
leads to a better generalizing, a dropout layer with the rate
of 0.2 is used. All the models are trained for 25 epochs and
the reported test accuracy corresponds to the best accuracy
obtained on the validation set.

SVM model

In this section, we explain the design of SOFTSVM, an
SVM model for question relatedness task. We investigate
different features as well as different data selections to
achieve the best possible results.

We extract three types of features from knowledge units:
Number of common n-grams which is simply the number of
common word n-grams, and common character n-grams in
a pair of text sequences. Cosine similarity measure to deter-
mine the similarity between two vectors (Kenter and De Ri-
jke 2015; Levy, Goldberg, and Dagan 2015). This feature is
obtained by TF-IDF weighting, computed over the training
and development datasets. And, Soft-cosine similarity mea-
sures that unlike the traditional cosine similarity, takes into
account word-level relations by computing a relation ma-
trix (Sidorov et al. 2014). Given two N-dimension vectors a
and b, the soft cosine similarity is calculated as follows.

soft� cosine(a, b) =

P
i,
N
j aimijbjqP

i,
N
j aimijaj

qP
i,
N
j bimijbj

(1)
Unlike cosine similarity, soft-cosine similarity between two
texts without any words in common is not null as soon as the
two texts share related words. For computing the matrix M ,
we followed the same implementation presented in (Charlet
and Damnati 2017), the winner of SemEval-2017 Task 3,
Question-Question similarity. We create three variants of
soft-cosine similarity feature. One is computed based on
Levenshtein distance (Soft Lev), and the other two features
are based on two different word embeddings: Google News
pre-trained word2vec (Mikolov et al. 2013a)(Soft Google)
and Stack Overflow domain-specific word2vec (Soft SO).

Implementation Details (SOFTSVM)

We build an SVM model with the linear kernel using
sklearn package (Pedregosa et al. 2011). In total, for
each KU pair, we extract ten different hand-crafted features:

three common word n-grams (for n=1,2 and 3), three com-
mon character n-grams (for n=3,4 and 5), cosine similarity
and three soft-cosine similarity features Soft SO, Soft Lev
and Soft Google. We compute the features between titles,
bodies and answers separately. For computing Soft SO, we
train word2vec on text parts of the dataset using skip-gram
model (Mikolov et al. 2013b) with vectors dimension 200
and minimum word frequency of 20.

Feature Selection

In this section, we compare and select important features
by building SVM models using each feature separately. As
shown in Figure 5, cosine and three Soft-cosine features out-
perform other features. Therefore, we choose cosine similar-
ity, Soft SO, Soft Google, and Soft Lev, as the final feature
set in the SOFTSVM because they perform better than other
features.

Figure 5: Performance of SVM models using individual fea-
tures

To compare and select the important text selection parts,
we build the SVM model by considering only title, body
or answers. As shown in Table 3, the model with different
parts perform similarly and the best performance is achieved
when we consider all three, title, body and answers.

Table 3: Results of choosing different text selections.
Text selection/metrics F-micro Precision Recall
Title 0.47 0.44 0.48
Body 0.51 0.49 0.51
Answers 0.51 0.5 0.51
Title, Body, Answers 0.59 0.58 0.59

Results and Discussion

Analysis of Results Table 4 compares results for both
SOFTSVM and DOTBILSTM on Stack Overflow dataset.
Comparing the obtained results, we realize that DOTBIL-
STM substantially outperforms SOFTSVM by more than 16
absolute percentage point in F-micro. This suggests that the
BiLSTM model can utilize the large amount of training data
in Stack Overflow dataset and predict the relatedness be-
tween knowledge units more effectively than our traditional
model.



Table 4: Results for SOFTSVM and DOTBILSTM models
Model/Metrics F-micro Precision Recall
SOFTSVM 0.59 0.58 0.59
DOTBILSTM 0.75 0.75 0.75

Tables 5 shows F-micro scores for predicting individual
classes. Comparing results of the individual classes, DOT-
BILSTM performs better than SOFTSVM in predicting Iso-
lated, Duplicate and Indirect classes.

Table 5: Comparing the results (f-score) of SOFTSVM and DOT-
BILSTM models

Models/Classes Duplicate Direct Indirect Isolated Overall: Micro
SOFTSVM 0.53 0.57 0.44 0.79 0.59
DOTBILSTM 0.92 0.55 0.67 0.87 0.75

Reformulating the problem to the binary format of Dupli-
cate Detection: For having a better comparison between
our task and other typical duplicate/non-duplicate classifi-
cation studies (some mentioned in “Related Work”), we re-
formulate the task to Duplicate Question Detection (DQD)
and report the results of our models in the 2-class scenario.
DQD is to predict if two given knowledge units are either
duplicate or non-duplicate. To evaluate the models under the
DQD scenario, we need to map four relatedness classes into
two Duplicate and Not-duplicate classes. We consider du-
plicate class from the original dataset as duplicate and the
rest as non-duplicates instances. To address the imbalanced
class problem, we apply under-sampling techniques for non-
duplicate class. More precisely, we randomly choose in-
stances from all other three classes (direct, indirect and iso-
lated) to have an equal number of both classes. By reformu-
lating the task from multi-class to binary classification task,
we expect our models to achieve higher results. We evaluate
both DOTBILSTM and SOFTSVM models using the refor-
mulated dataset. DOTBILSTM and SOFTSVM prediction
performances increase to 0.91 and 0.70 f-score respectively.
As we expected, by having two classes instead of four, in a
relatively simpler problem, DOTBILSTM and SOFTSVM
results increase by 16% percent and 11% respectively.
Comparing with AskUbuntu Dataset: We take a further
step and expand our work by investigating AskUbutu DQD
dataset for two specific reasons: (1) to show the robust-
ness of the used models, and (2) To show the challeng-
ing nature of the proposed dataset on Stack Overflow com-
pared to others. We expect to observe a different behavior
of our models on this data due to the different nature and
structure. For example, unlike Stack Overflow, the inputs of
AskUbuntu dataset are only limited to title+body of each
question. Moreover, AskUbuntu data contains a fewer num-
ber of instances, that is 24K pairs for training, 6K for testing
and 1K for validation part. We use the cleaned version of
AskUbuntu dataset (without signal) prepared by (Rodrigues
et al. 2017). Using the same splitting used in (Rodrigues
et al. 2017), our both models perform similarly. DOTBIL-
STM model achieves 0.88 f-score and 0.87 accuracy, and
SOFTSVM model achieves 0.90 f-score and 0.90 accuracy.

Our models outperform the state-of-the-art Hybrid DCNN
model on this dataset introduced in (Rodrigues et al. 2017)
with the accuracy of 0.79. This shows that not only our
lightweight BiLSTM and traditional SVM model perform
well in the Stack Overflow dataset, these models also out-
perform the complex Hybrid DCNN model on AskUbuntu
dataset. Note that in order to evaluate the models on this
dataset, we need to customize models to only have 2 inputs
(title+body pairs).
More To Explore: In our experiments, we purposely con-
fined our models to only utilize information in Title, Body
and Answers. However, relying on other parts of the dataset
like BestAnswer, Tags and Code parts can boost perfor-
mance further for this task. As future work, we intend to
investigate to utilize code parts as they are considered as
informative resources about the content of the knowledge
units.

Conclusion

This paper presents the task along with a large-scale dataset
for identifying relatedness of knowledge unit (question
thread) pairs in Stack Overflow. We reported all the steps for
creating this dataset and a user study to evaluate the quality
of the dataset. We devised two models, DOTBILSTM and
SOFTSVM for this task and their performances for future
evaluations. We also compared the performance of DOT-
BILSTM and SOFTSVM models with the state-of-the-art
model on AskUbuntu dataset and found that these models
outperform the state-of-the-art model. We made the dataset
and models available online.
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