
14

Planning for Human-Robot Teaming
in Open Worlds

KARTIK TALAMADUPULA, J. BENTON, and SUBBARAO KAMBHAMPATI
Arizona State University
and
PAUL SCHERMERHORN and MATTHIAS SCHEUTZ
Indiana University

As the number of applications for human-robot teaming continue to rise, there is an increasing
need for planning technologies that can guide robots in such teaming scenarios. In this article, we
focus on adapting planning technology to Urban Search And Rescue (USAR) with a human-robot
team. We start by showing that several aspects of state-of-the-art planning technology, including
temporal planning, partial satisfaction planning, and replanning, can be gainfully adapted to this
scenario. We then note that human-robot teaming also throws up an additional critical challenge,
namely, enabling existing planners, which work under closed-world assumptions, to cope with the
open worlds that are characteristic of teaming problems such as USAR. In response, we discuss the
notion of conditional goals, and describe how we represent and handle a specific class of them called
open world quantified goals. Finally, we describe how the planner, and its open world extensions,
are integrated into a robot control architecture, and provide an empirical evaluation over USAR
experimental runs to establish the effectiveness of the planning components.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Plan execution, formation, and generation; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding—Perceptual reasoning

General Terms: Human Factors, Experimentation

Additional Key Words and Phrases: Automated planning, search and rescue, planner, robot

ACM Reference Format:
Talamadupula, K., Benton, J., Kambhampati, S., Schermerhorn, P., and Scheutz, M.. 2010. Plan-
ning for human-robot teaming in open worlds. ACM Trans. Intell. Syst. Technol. 1, 2, Article 14
(November 2010), 24 pages.
DOI = 10.1145/1869397.1869403 http://doi.acm.org/10.1145/1869397.1869403

This research is supported in part by the ONR grants N00014-09-1-0017 and N00014-07-1-1049,
and the NSF grant IIS-0905672.
Authors’ addresses: K. Talamadupula (corresponding author), J. Benton, S. Kambhampati,
Department of Computer Science, Arizona State University; email: krt@asu.edu; P. Schermerhorn,
M. Scheutz, Indiana University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 2157-6904/11-ART14 $10.00
DOI 10.1145/1869397.1869403 http://doi.acm.org/10.1145/1869397.1869403

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:2 • K. Talamadupula et al.

1. INTRODUCTION

As the fields of robotics and Human-Robot Interaction (HRI) have advanced, de-
mand has escalated for applications that require humans and robots to “team”
and work together to solve complex problems. While some of these scenarios
may be handled through “teleoperation”, an increasing number require team-
ing between humans and autonomous robots. A compelling application of this
type involves the urban search and rescue scenario, where a human is in re-
mote contact with the robot and provides high-level instructions and goals.
Clearly, robots operating in such teaming scenarios require the ability to plan
(and revise) a course of action in response to human instructions. Our focus in
this article is on understanding the challenges faced by the planner that guides
a robot in such teaming scenarios.

Although there has been extensive work in the past on understanding the
challenges of human-planner interactions (refer to mixed-initiative planning)
and planner-robot interaction (refer to planning and execution), these efforts
do not provide a complete solution in human-robot teaming scenarios (see
Section 6).

Several parts of the state-of-the-art planning technology that go beyond typ-
ical classical planning are both required and easily adapted to human-robot
teaming scenarios. In particular, the planner should allow for actions with du-
rations to handle goals with deadlines, and partial satisfaction of goals should
be possible to allow the planner to “skip” seemingly unreachable goals (e.g.,
if the goal of exiting a building cannot be currently satisfied, that should not
prevent the robot from reporting on injured humans). For partial satisfaction
planning, we model soft goals (i.e., goals that may remain unachieved) with a
reward and give a cost to each action and the planner seeks to find a plan with
maximum net benefit (i.e., summed goal reward - summed action cost). Along
with these, an important part of any online system is execution monitoring and
replanning to allow the planner to receive and react to new information from
either the environment (e.g., the discovery of a new area) or from a human com-
mander (e.g., a change in goal deadline). To accept information from a human
commander, the robotic architecture parses and processes natural language
(i.e., speech) into goals or new facts. If the architecture cannot handle a goal
or fact by following a simple script located in its library, it calls the planner to
find a method of achieving the goal.

Human-robot teaming tasks present an additional critical challenge not han-
dled by current planning technology: open worlds. Most teaming tasks involve
open worlds and require the ability to handle both counterfactual knowledge
and conditional goals. For example, a human commander might instruct the
robot to report on any injured humans that it encounters in a search-and-rescue
scenario. In such a scenario, the world is open in that neither the human nor
the robot know where injured humans are.

While the state-of-the-art planners are very efficient, they focus mostly
on closed worlds. Specifically, they expect full knowledge of the initial state,
and expect up-front specification of the goals. Adapting them to handle open
worlds presents many thorny challenges. Three tempting yet ultimately flawed

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:3

approaches for making closed world planners handle open worlds involve ei-
ther blindly assuming that the world is indeed closed, deliberately “closing”
the world by acquiring all the missing knowledge before planning, or account-
ing for all contingencies during planning by developing conditional plans. The
alternative (assuming a closed world) will not only necessitate frequent re-
planning during execution, but can also lead to highly suboptimal plans in
the presence of conditional goal rewards. Acquiring full knowledge up front
would involve the robot doing a sensing sweep to learn everything about
its world before commencing the planning. This is clearly infeasible in open
worlds where we do not even know how many objects may be there and thus
do not know when to stop sensing. After all, a robot cannot be simply com-
manded to “sense everything,” but rather has to be directed to perform spe-
cific sensing tasks. Accounting for missing knowledge would involve making
conditional plans to handle every type of contingency, and letting the robot
follow the branches of the plan that are consistent with the outcomes of its
sensing. Such full contingency planning is already known to be impractical in
propositional worlds with bounded indeterminacy (refer to Meuleau and Smith
[2003]); it is so in open worlds where the number of objects (and their types) are
unknown.

What is needed instead is both a framework for specifying conditional knowl-
edge and rewards, and an approach for using it to direct the robot in such a
way as to intelligently trade sensing costs and goal rewards. Accordingly, we
propose an approach for representing and handling a class of conditional goals
called Open World Quantified Goals (OWQGs). OWQGs provide a compact way
of specifying conditional reward opportunities over an “open” set of objects. Us-
ing OWQGs, we can specify (for instance) that for a robot to report an injured
human, it must have found an injured human and that finding an injured
human involves sensing. We shall see how OWQGs foreground the trade-off
between sensing cost and goal reward. We will discuss the issues involved in
optimally selecting the conditional rewards to pursue, and describe the approx-
imate “optimistic” method we used in the current work.

The rest of this article is devoted to describing the details of our planner and
its open world extensions. We also discuss how the planner is integrated into the
robotic architecture to support human-robot teaming in USAR, and present an
empirical evaluation establishing the effectiveness of our approach. The article
is organized as follows. We start by describing some details of our motivating
USAR scenario. In Section 2, we present the automated planner that is used
as a part of this system, including a description of the update syntax that
enables new information in the world to be relayed to the planner. In Section
3, we discuss the challenges of planning in an open world, culminating in
the definition of a new construct for conveying open world information and
a description of its implementation in our system. Section 4 describes the
architecture used to control the robotic agent and the integration of the planner
and this architecture, including a description of how sensing and updates to
the world state are handled. In Section 5, we present the results of an empirical
evaluation conducted on the robot. Section 6 provides an overview of related
work, and Section 7 presents our conclusions.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:4 • K. Talamadupula et al.

Fig. 1. A map of a sample scenario; boxes in rooms are stand-ins for humans, where green (at left)
indicates injured and blue (at right) indicates normal.

1.1 Overview of USAR Scenario

We consider the problem of a human-robot team engaged in an Urban Search
And Rescue (USAR) scenario inside a building. The robot is placed at the be-
ginning of a long hallway; a sample layout’s map is presented in Figure 1. The
human team member has intimate knowledge of the building’s layout, but is
removed from the scene and can only interact with the robot via on-board wire-
less audio communication.1 The hallway in which the robot is located has doors
leading off from either side into rooms, a fact known to the robot. However,
unknown to the robot (and the human team member) is the possibility that
these rooms may contain injured humans (victims). The robot is initially given
a hard goal of reaching the end of the hallway by a given deadline based on
wall-clock time. As the robot executes a plan to achieve that goal, the team is
given the (additional) information regarding victims being in rooms. Also spec-
ified with this information is the quantified soft goal of reporting the location of
victims.

In this example, the planner must reason about the cost-benefit trade-off
(net benefit) of attempting to find a victim, since it is a soft goal and can be
ignored if it is not worth the pursuit; it must then direct the robot to sense for
the information that it needs in order to determine the presence of a victim in
a particular location. The dynamic nature of the domain coupled with the par-
tial observability of the world precludes complete, a priori specification of the
domain, and forces the robot and its planner to handle incomplete and evolving
domain models [Kambhampati 2007]. This fact, coupled with the inability of
human experts to completely specify information relevant to the given problem
and goals up front, makes it quite likely that information needed to achieve
some goals may become available at some later stage during the planning
process.

2. BASE PLANNER

The planner that we use, called SapaReplan, is an extension of the metric-
temporal planner Sapa [Do and Kambhampati 2002] that handles partial sat-
isfaction planning [Benton et al. 2009] and replanning [Cushing et al. 2008].

1Our overall scenario involves supporting natural language communication between the human
and the robot; for details on the communications see Cantrell et al. [2010], Dzifcak et al. [2009].

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:5

Specifically, the planning problem is defined in terms of the initial state and
the set of goals that need to be satisfied. Actions have known (real-valued) costs.
Each goal can have a reward and a penalty ∈ [0,∞]. The reward is accrued
when the goal is satisfied in the final state, while the penalty is incurred for
not satisfying it. The costs, rewards, and penalties are all assumed to be in
the same units. The net benefit of a solution plan is defined as the sum of
rewards of the goals it achieves, minus the sum of penalties of the goals it fails
to achieve, and minus the sum of costs of the actions used in the plan. The use
of reward/penalty model allows our planner to model both opportunities and
commitments/constraints in a uniform fashion. A goal with zero penalty is a
pure opportunity, while one with zero reward is a pure commitment. A “hard"
goal has finite reward but infinite penalty (and thus must be achieved by any
plan).

The planner consists of three coupled, but distinct parts:

—Search. SapaReplan performs a weighted A*, forward search using net benefit
as the optimization criterion.

—Heuristic. The heuristic used to guide the planner’s search is based on well-
known relaxed planning graph heuristics where, during search, relaxed so-
lutions are found in polynomial time per state. Sapa uses a temporal relaxed
planning graph that accounts for the durations of actions when calculat-
ing costs and finding relaxed solutions. In the partial satisfaction planning
extensions, the heuristic also performs online goal selection. In essence, it
solves for all goals (hard and soft) in the relaxed problem and gives a cost
for reaching each of them (∞ for unreachable goals). If the cost of reaching
a soft goal is greater than its reward, it removes that goal from the heuristic
calculation. If the cost of reaching a hard goal is infinity, it marks a state as
a dead end. Finally, the difference between the total reward and total cost of
the remaining goals is calculated and used as the heuristic value.

—Monitoring / Replanning. The extensions for replanning require the use of
an execution monitor, which takes updates from the human-robot team ar-
chitecture (in this case). Upon receiving an update, the planner updates its
knowledge of the “current state” and replans. Replanning itself is posed as a
new partial satisfaction planning problem, where the initial and goal states
capture the status and commitments of the current plan [Cushing et al.
2008].

To see how our planning system copes with open environment scenarios, it
is important to understand the details of its execution monitoring component.
This is arguably the most important part of the planning system for the problem
at hand, as its focus is on handling unexpected events and gathering new
information for the planner. It serves as an interface between the human-robot
team architecture (discussed in Section 4.1) and the planning engine.

Problem updates. New sensory information, goals, or facts given by a hu-
man commander can be sent to the planner at any time, either during plan-
ning or after a plan has been output. Regardless of the originating source,
the monitor listens for updates from a single source from the architecture and

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:6 • K. Talamadupula et al.

correspondingly modifies the planner’s representation of the problem. Updates
can include new objects, timed events (i.e., an addition or deletion of a fact
at a particular time, or a change in a numeric value such as action cost), the
addition or modification (on the deadline or reward) of a goal, and a time point
to plan from. An example update is given next.

(:update

:objects

red3 - zone

:events

(at 125.0 (not (at red2)))

(at red3)

(visited red3)

:goal (visited red4) [500] - hard

:now 207.0)

All goals are on propositions from the set of boolean fluents in the problem,
and there can only be one goal on any given proposition. In the default setting,
goals are hard, lack deadlines, and have zero reward.2 All fields in an update
specification, with the exception of “:now” (representing the time we expect to
begin executing the plan), may be repeated as many times as required, or left
out altogether. The intent of allowing such a flexible representation for updates
is to provide for accumulation of changes to the world in one place. In the
particular example provided, a new object “red3” of type “zone” is declared. In
addition, three new events are defined, one of them with a temporal annotation
that describes the time at which that event became true. A new hard goal that
carries 500 units of reward is also specified, and the update concludes with the
specification of the current time.

As discussed by Cushing et al. [2008], allowing for updates to the planning
problem provides the ability to look at unexpected events in the open world
as new information rather than faults to be corrected. In our setup, problem
updates cause the monitor process to restart the planner (if it is running) after
updating its internal problem representation.

3. PLANNING IN THE OPEN WORLD

As previously discussed, there exists an obvious problem with using a planner
that assumes a closed world within an open world environment. Because the
world is open, the robot (as well as the human) do not have full knowledge
of all the objects in the world. In the USAR scenario, neither the human nor
the robot know where the injured humans might be. Furthermore, it is also
possible that the human-robot team does not have a full “map” of the building
in which the rescue is taking place.

One immediate ramification of the open world is that the goals are often
conditioned on particular facts whose truth value may be unknown at the
initial state. For example, the most critical goal in the USAR scenario, namely

2Since these goals are hard, they can be seen as carrying an infinite penalty, that is, failing to
achieve even one such goal will result in plan failure.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:7

reporting the locations of injured humans, is conditioned on finding injured
humans in the first place.

To see this, consider our Urban Search And Rescue (USAR) scenario, where
we have a set of objects that imply certain facts. For instance, when moving
through the hallway we can say that sensing a door implies the existence of a
room. Subsequently, doors imply the potential for goal achievement (i.e., oppor-
tunities for reward). Specifically, the robot’s task is to find injured people in a
building. While the number of injured individuals remains unknown, the com-
mander becomes aware that people are likely within rooms (and subsequently
passes this information on to the robot). This goal is over an open world, in that
new objects and facts may be brought to light through either external sources
like the mission commander or through action execution.

To be effective in such scenarios, the planner should be opportunistic, gen-
erating plans that enable goal achievement as against finding the most direct
path to the currently known goals (e.g., entering rooms to look for injured indi-
viduals). This planning is interleaved with plan execution. Unfortunately, we
have several other constraints that may preclude the achievement of goals. The
robot must meet a hard deadline and may run out of exploration time; it may
also be unable to fully explore the building due to parts of it being inaccessible.
Additionally, sensing to resolve the truth of world facts and the existence of ob-
jects may often be costly and time consuming. This means that certain aspects
of the world may remain open (and therefore unknown) by design.

3.1 Conditional Goals

To formally model the USAR robot’s goal of looking for and reporting injured
people, it is useful to consider the fact that this goal is certainly not one of
simple achievement, since the robot does not need to (and should not) report
victims unless they are actually present in the rooms. The uncertainty in this
scenario (and other similar real-world problems) stems from the inherently
conditional presence of objects (and the truth of facts about them) in the world.
Such goals can be looked at as conditional goals.

For exposition purposes, we shall start with a discussion of challenges in-
volved in handling propositional conditional goals. A propositional conditional
goal P � G is interpreted as “G needs to be satisfied if P is true initially”.
Formally, we have the following.

Conditional goal. Given ground predicates A and B, a (hard) conditional
goal A � B is defined as the requirement that if A is true in the initial state
I, then any solution plan ρ must make B true in the final state resulting from
the application of ρ to I.

From the previous definition of conditional goals, it holds that the set of goals
that a plan ρ needs to fulfil in order to be considered a solution to the problem
is variable, and that the composition of such a set depends on the state of the
antecedents of the conditional goals initially (at I). It also follows that a plan
ρ ′ will not be considered a solution unless it fulfils each and every one of the
conditional goals gc ∈ Gc.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:8 • K. Talamadupula et al.

Fig. 2. A schematic outline of methods to deal with conditional goals.

The conditional goal as defined before poses a “hard” constraint: if the an-
tecedent holds, then every solution plan must achieve the goal. It is useful to
relax this requirement.

Soft conditional goal. A soft conditional goal A � B [u][p] is defined as the
provision that if A is true in the initial state I, then the achievement of B in
the final state G′ ⊆ G (the set of all goals) will accrue a reward of u units, while
the failure to achieve B will incur a penalty of p units.

In general, it is useful consider a spectrum of planning methods (as shown
in Figure 2) to deal with conditional goals, all of which are contingent on the
the observability of the initial state I ∈ π . If I is fully observable, the planner
knows the values of the antecedents of all the conditional goals gc ∈ Gc. With
this information, a problem with conditional goals may be compiled into a
standard classical planning problem (in case only hard conditional goals are
present and a Partial Satisfaction Planning (PSP) problem otherwise).

However, if I is partially observable, the planner is faced with a more complex
problem. If all the conditional goals are hard (and hence must be achieved for
plan success), the planner has no option but to direct the robot to sense for all
the facts that occur in the antecedents of the goals in Gc, culminating in the
compilation approach mentioned previously.

If the conditional goals in the scenario are all soft instead,3 the planner
is confronted with an interesting problem: it must not only sense in order to
establish which of the antecedents are true in the initial state, but must also

3If there is a mixture of hard and soft conditional goals, they can be split and we can handle the
hard conditional goals as described previously.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:9

select a subset of these goals whose achievement will optimize the net benefit
achieved given the costs and rewards of achieving the original goals and the
costs of sensing for the antecedents (the standard PSP problem).

The most general way of dealing with conditional goals in such a case would
be to accept knowledge on the antecedents in the form of distributions, and to
use a probabilistic planner to compute the set of goals with the best expected net
benefit. As an illustration, suppose the planner decided to sense the conditional
goals Gi

c : {Pi
1 � Gi

1, Pi
2 � Gi

2, . . . , Pi
k � Gi

k}. Let us analyze the costs and
benefits of this decision. First, let S(Gi

c) denote the cost of sensing the status of
the conditions {Pi

1 · · · Pi
k}. Since the results of sensing cannot be predicted during

plan synthesis, to decide whether this sensing cost will be offset by the increased
net benefit, the planner has to compute the expected net benefit achievable. In
order to do this, it needs to have (or assume) some prior knowledge on how
the truth values of the antecedents P : Pi of the conditional goals are jointly
distributed. Let this distribution be �(P). Further, let Gi

c \ P be the set of
conditional goals that are triggered by a specific valuation of the antecedents.
For each such valuation P, the optimal net benefit achievable by the planner
is B(Go ∪ [Gi

c \ P]). The expected net benefit is EP∼�B(Go ∪ [Gi
c \ P]). Thus the

optimal set of conditional goals to be sensed Ĝc is computed as

Ĝc = argmax
Ĝi

c⊆Gc

EP∼�B(Go ∪ [Gi
c \ P]) − S(Gi

c).

Focusing sensing this way, while optimal, can be impractical both because of
the need for distributional information, and because of the computational cost
of computing optimal net benefit plans for each potential goal set. We may be
forced to make reasonable assumptions on the distribution of the antecedents
of these conditional goals, or resort to regret minimization approaches that do
not require distributional information.

Conditional Goals in the Open World

While propositional conditional goals give us an understanding of the trade-
offs between sensing costs and goal rewards, they are not expressive enough for
open world scenarios such as USAR, where the conditional rewards are often
quantified over an open set of objects. Accordingly, we will consider quantified
conditional goals ∀x P(x) � G(x). Because the quantification is over an open set,
it cannot be simply expanded into a set of propositional conditional goals. For
example, we cannot convert a quantified conditional goal of type ∀x person(x) ∧
injured(x) � reportLocation(x) into a finite set of ground conditional goals since
we do not know a priori how many persons are there, let alone which of them are
injured. This makes direct application of the decision-theoretic goal selection
approach described earlier infeasible. Indeed, even the naive approaches of
planning for all contingencies or closing the world by sensing for everything
up front are infeasible to realize, as the robot does not know how many objects
may be there, and thus does not quite know when to stop sensing. Instead,
we have to resort to a more incremental expansion of the quantified goal that
interleaves planning and execution, and deliberately closes sensing operations

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:10 • K. Talamadupula et al.

in particular parts of the world. In the following sections, we describe both our
representation for quantified conditional goals, called OWQG, and our current
method for handling them during planning.

3.2 Open World Quantified Goals

Open World Quantified Goals (OWQG) [Talamadupula et al. 2010] combine
information about objects that may be discovered during execution with partial
satisfaction aspects of the problem. Using an OWQG, the domain expert can
furnish details about what new objects may be encountered through sensing
and include goals that relate directly to the sensed objects. An Open World
Quantified Goal (OWQG) is a tuple Q = 〈F,S,P, C,G〉 where F and S are
typed variables that are part of the planning problem. F belongs to the object
type that Q is quantified over, and S belongs to the object type about which
information is to be sensed. P is a predicate which ensures sensing closure for
every pair 〈 f, s〉 such that f is of type F and s is of type S, and both f and s
belong to the set of objects in the problem, O ∈ �; for this reason, we term P
a closure condition. C = ∧

i ci is a conjunctive first-order formula where each ci

is a statement about the openness of the world with respect to the variable S.
For example, c = (in ?hu - human ?z - zone) with S = ?hu - human means that
c will hold for new objects of the type “human” that are sensed. Finally G is a
quantified goal on S.

Newly discovered objects may enable the achievement of goals, granting
the opportunity to pursue reward. For example, detecting a victim in a room
will allow the robot to report the location of the victim (where reporting gives
reward). Given that reward in our case is for each reported injured person,
there exists a quantified goal that must be allowed partial satisfaction. In other
words, the universal base [Golden and Weld 1996], or total grounding of the
quantified goal on the real world, may remain unsatisfied while its component
terms may be satisfied. To handle this, we rely on the partial satisfaction
capability of the base planner (Section 2).

As an example, we present an illustration from our scenario: the robot is
directed to “report the location of all victims”. This goal can be classified as
open world, since it references objects that do not exist yet in the planner’s
object database O; and it is quantified, since the robot’s objective is to report
all victims that it can find. In our syntax, this information is encoded as follows.

1 (:open

2 (forall ?z - zone

3 (sense ?hu - human

4 (looked_for ?hu ?z)

5 (and (has_property ?hu injured)

6 (in ?hu ?z))

7 (:goal (reported ?hu injured ?z)

8 [100] - soft))))

In the preceding example, line 2 denotes F, the typed variable that the goal
is quantified over; line 3 contains the typed variable S, the object to be sensed.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:11

Line 4 is the unground predicate P known as the closure condition (defined
earlier). Lines 5 and 6 together describe the formula C that will hold for all
objects of type S that are sensed. The quantified goal over S is defined in line
7, and line 8 indicates that it is a soft goal and has an associated reward of 100
units. Of the components that make up an open world quantified goal Q, P is
required4 and F and S must be nonempty, while the others may be empty. If
G is empty, that is, there is no new goal to work on, the OWQG Q can be seen
simply as additional knowledge that might help in reasoning about other goals.

3.3 Handling OWQGs in the Planning System

To handle open world quantified goals, the planner grounds the problem into
the closed world using a process similar to Skolemization. More specifically, we
generate runtime objects from the sensed variable S that explicitly represent
the potential existence of an object to be sensed. These objects are marked as
system-generated runtime objects. Given an OWQG Q = 〈F,S,P, C,G〉, one
can look at S as a Skolem function of F, and runtime objects as Skolem entities
that substitute for the function. Runtime objects are then added to the problem
and ground into the closure condition P, the conjunctive formula C, and the
open world quantified goal G. Runtime objects substitute for the existence of S
dependent upon the variable F. The facts generated by following this process
over C are included in the set of facts in the problem through the problem
update process. The goals generated by G are similarly added. This process is
repeated for every new object that F may instantiate.

We treat P as an optimistic closure condition, meaning a particular state of
the world is considered closed once the ground closure condition is true. On ev-
ery update the ground closure conditions are checked and if true the facts in the
corresponding ground values from C and G are removed from the problem. By
planning over this representation, we provide a plan that is executable given
the planning system’s current representation of the world until new informa-
tion can be discovered (via a sensing action returning the closure condition).
The idea is that the system is interleaving planning and execution in a manner
that moves the robot towards rewarding goals by generating an optimistic view
of the true state of the world.

As an example, consider the scenario at hand and its open world quantified
goal. Given two known zones, zone1 and zone2, the process would generate a run-
time object human!1. Subsequently, the facts (has property human!1 injured) and
(in human!1 zone1) and the goal (report human!1 injured zone1) (with reward
100) would be generated and added to the problem (where the exclamation
mark (!) indicates a runtime object). A closure condition (looked for human!1

zone1) would also be created. Similarly, a runtime object human!2 would be
generated and the facts (has property human!2 injured) and (in human!2 zone2)

and goal (report human!2 injured zone2) added to the problem, and the clo-
sure condition (looked for human!2 zone2) would be created. When the planning

4If P were allowed to be empty, the planner could not gain closure over the information it is
sensing for, which will result in it directing the robot to resense for information that has already
been sensed for.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:12 • K. Talamadupula et al.

system receives an update including (looked for human!1 zone1), it will update
the problem by deleting the facts (has property human!1 zone1) and (in human!1

zone1) and the goal (report human!1 injured zone1) at the appropriate time
point. Similar actions are taken when (looked for human!2 zone2) is received.
The planner must only output a plan up to (and including) an action that will
make the closure condition true. Therefore once the condition becomes true,
the truth values of the facts in C are known.

4. OVERALL SYSTEM AND INTEGRATION

The SapaReplan planner is integrated into the robotic architecture as a newly
created client server that interacts directly with a goal manager, as detailed
in Schermerhorn et al. [2009] (see Figure 4). This new server does not manage
action execution, as the existing goal manager already has that capability. The
planner is viewed by the goal manager, in effect, as an external library that
augments its internally maintained store of procedural knowledge. When a new
goal is presented, the goal manager determines whether there is a procedure
already known to achieve it; if so, then that procedure is executed, otherwise the
goal is sent to the planning component, which returns a script representation
of a plan to achieve the goal, if one is found. In the following, we describe these
parts and the integration of the system in detail.

4.1 DIARC Control Architecture

The architecture used to control the robotic agent in the aforesaid scenario
(shown in Figure 3) is a subset of the Distributed, Integrated, Affect, Reflection,
and Cognition architecture (DIARC)5 [Scheutz et al. 2007]. DIARC is designed
with human-robot interaction in mind, using multiple sensor modalities (e.g.,
cameras for visual processing, microphones for speech recognition and sound
localization, laser range finders for object detection and identification) to rec-
ognize and respond appropriately to user requests. DIARC is implemented in
the Agent Development Environment (ADE)6 [Scheutz 2006], a framework that
allows developers to create modular components and deploy them on multiple
hosts. Each functional component is implemented as a server. A list of all ac-
tive ADE servers, along with their functionalities, is maintained in an ADE
registry. The registry helps in resource location, security policy enforcement,
and fault tolerance and error recovery. When an ADE server requires function-
ality that is implemented by another component, it requests a reference to that
component from the registry, which verifies that it has permission to access
the component and provides the information needed for the two components to
communicate directly.

5DIARC combines higher-level cognitive tasks, such as natural language understanding, with
lower-level tasks, such as navigation, perceptual processing, and speech production [Brick and
Scheutz 2007]. DIARC has served as a research platform for several human subject experiments.
6ADE combines support for the development of complex agent architectures with the infrastructure
of a multiagent system that allows for the distribution of architectural components over multiple
computational hosts [Scheutz 2006].

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:13

Fig. 3. A schematic of the DIARC architecture used on the robot.

The ADE goal manager is a goal-based action selection and management
system that allows multiple goals to be pursued concurrently, so long as no
resource conflicts arise. When the actions being executed for one goal present
a hazard to the achievement of another goal, the goal manager resolves the
conflict in favor of the goal with the higher priority, as determined by the net
benefit (reward minus cost) of achieving the goals and the time urgency of each
(based on the time remaining within which to complete the goals).

The goal manager maintains a “library” of procedural knowledge in the form
of (1) action scripts which specify the steps required to achieve a goal, and
(2) action primitives which typically interface with other ADE servers that
provide functionality to the architecture (e.g., a motion server could provide an
interface to the robot’s wheel motors, allowing other ADE servers to drive the
robot). Scripts are constructed of calls to other scripts or action primitives. Aside
from this predefined procedural knowledge, however, the goal manager has no
problem-solving functionality built in. Therefore, if there is no script available
that achieves a specified goal, or actions are missing in a complex script, then
the action interpreter fails. The addition of the planning system thus provides
DIARC with the problem-solving capabilities of a standard planner in order
to synthesize action sequences to achieve goals for which no prior procedural
knowledge exists.

4.2 Integrating the Planner into DIARC

The integration uses a new interface to the planner to facilitate updates from
the goal manager. The modified version of the planner is encapsulated as a
new DIARC component that provides access to this interface to other ADE
servers (although in practice, the goal manager is the only client of the planning
server). The interface specifies how the goal manager can send state updates to
the planner, and how the planner, in turn, can send updated or new plans to the
goal manager. State updates are sent whenever relevant data of the requested
type is received via sensors. In the USAR scenario that we use, for example,
information about doors and boxes (which stand in for humans in our experi-
mental runs; see Section 5) would be considered relevant. In this manner, the
goal manager filters the information that is sent back in the form of problem
updates, to avoid overwhelming the planning system. These updates can then

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:14 • K. Talamadupula et al.

Fig. 4. A schematic showing the interaction of the SapaReplan planner server with the ADE
infrastructure.

trigger a replanning process, which returns a plan in the form of action scripts
that the goal manager can adopt and execute in the same way as its prede-
fined scripts. Moreover, the new plan can be added to the goal manager’s local
knowledge base so that future requests can be serviced locally without having
to invoke the planner. This plan reuse is applicable only when the relevant
parts of the world remain unchanged, where relevance is determined by exam-
ining the preconditions of the actions in the plan. If there is a change in these
facts due to updates to the world, ADE initiates replanning via SapaReplan.

The SapaReplan planner server starts the SapaReplan problem update mon-
itor, specifies the planning domain, and (when applicable) the sensory update
types that are of interest to the planner are sent to the goal manager (via the
“attend” mechanism, described in Section 4.3 shortly), and the planner server
enters its main execution loop. In this loop, it retrieves new plans from the
planner (to be forwarded to the goal manager) and sends new percepts and
goal status updates (received from the goal manager) to the planner. If a per-
cept triggers replanning, the previously executing plan (and script) is discarded
and a new plan takes its place.

A closely related issue that crops up when integrating a planner such as
SapaReplan into a robotic architecture is that actions (and consequently plans)
take time to execute on a robot and carry temporal annotations denoting the
time it takes to execute them (as outlined in Section 2). Since we are executing
in an open world, it is entirely possible that an action takes more time to execute
than was planned. We circumvent this problem by assigning conservative time
estimates to each action available to the robotic agent (and consequently the
planner). If there is slack time during the execution, we simply bring forward
the execution of the actions that are next in the plan. Though this approach
would fail for certain types of concurrency exhibited by actions, the USAR
scenario that we seek to solve does not contain any actions that need to be
executed concurrently.7 In case an action takes longer time to execute than

7Considering the fact that there is only one robotic agent that can effect changes in the world in
our scenario, this is not an unreasonable assumption to make.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:15

even the conservative estimate assigned to it (due to a failure of some nature),
the planner is called into play in order to provide a new plan.

4.3 Sensing and Updates

The planner’s ability to exploit opportunities requires, of course, that it be
informed of changes in the environment that signal when an opportunity arises.
One major issue for any robotic system operating in the real world is how
to determine which small fraction of the features of the environment are of
greatest salience to its goals. Resource limitations preclude a “watch out for
anything” approach, necessitating some guidance with regard to how sensory
processing resources should be allocated. For example, in a search and rescue
scenario where victims are likely to be located in rooms, the appearance of a
doorway would be of high relevance to the system’s goals.

A special “attend” primitive has been defined in the goal manager to allow
servers (such as the planner server) to specify which percepts are of interest.
This will focus attention on those types of percepts by causing the instantiation
in the goal manager of monitoring processes that communicate with other ADE
servers (e.g., the vision server to detect targets of interest that are visually per-
ceivable, the laser range finder server to detect doorways, which are detected in
the range finder profile, etc.). In the case of the SapaReplan planner server, the
percept types of interest are those that could prompt opportunistic replanning
(e.g., detection of a new doorway might trigger a new plan to explore the room).
A variety of percept types are available from various ADE servers; a subset of
those most relevant to the present study are:

(1) (robot orientation ?heading velocity ?vel location ?loc) gives
the current orientation, velocity, and location of the robot

(2) (landmark ?name type ?t heading ?dir distance ?dist) provides in-
formation about a perceived landmark with the given label ?name of type
?t (e.g., chair, table, etc.), its direction relative to the robot’s heading in
degrees, and its distance in meters

(3) (box ?name color ?value heading ?dir distance ?dist) provides in-
formation about a perceived box, including its label, color, direction relative
to the robot’s heading in degrees, and distance in meters

(4) (doorway ?name heading ?dir distance ?dist) provides information
about a perceived doorway, including its direction relative to the robot’s
heading in degrees and distance in meters

When the monitoring process of the goal manager detects a percept in its
attend list, it constructs a plan update and sends it to the planner via the
planner server’s update method. Updates from the goal manager can trigger
the planner to replan to take advantage of detected opportunities. Plans are
generated in the form of ADE action scripts which are directly executable by
an action interpreter in the goal manager. Some examples of ADE scripts (both
simple and complex) available to the planner for creating plans are:

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:16 • K. Talamadupula et al.

(1) (look-for ?t) scans the room for percepts of type ?t while turning 360
degrees

(2) (move-to ?location) moves to the location specified (e.g., as indicated by
a landmark, for example, (move-to chair1))

(3) (turn-to ?location) turns to face the location specified (e.g., (turn-to
box3))

(4) (move-through ?doorway) moves through the specified doorway
(5) (report ?object ?c1 ...) reports the given characteristics ?c1, etc., (e.g.,

location, color) of the ?object

The new plan/script is passed to the goal manager, which oversees its execution.
When a plan completes, its postconditions are sent to the planner server as
goal status updates. If a newly encountered percept triggers replanning, the
previously executing plan is discarded and the new plan takes its place. Hence,
the SapaReplan planner server can provide problem-solving capabilities to
architectures constructed in the ADE infrastructure.

Example. The following example illustrates the interaction between the goal
manager, the planner server, and the planner. In this case, the robot is travers-
ing a hallway from hall-start to hall-end when it encounters a doorway
(having previously added doorways to the attend list). The goal manager sends
to the planner server a state update indicating that a new doorway (door1)
has been detected. The planner server generates an update to the planner that
includes the new door, but also updates the planner’s representation of the envi-
ronment; to begin with the planner knows only of the two locations hall-start
and hall-end and the path between them (hall-start ↔ hall-end), as it has
a hard goal of going to the end of the hallway. When the new doorway is detected,
a new room (room1) is created and a new location outside-room1 is generated
and linked into the path (hall-start ↔ outside-room1 ↔ hall-end). Sim-
ilarly, the path between the hallway and the newly detected room is added
(room1 ↔ outside-room1). This allows the planner to generate paths into and
out of the room if it determines that it is worth investigating the room (see the
following for details). This update to the environment is sent to the planner by
the planner server, and if the update causes a change in the currently executing
plan, the resultant script is sent to the goal manager for execution.

5. EMPIRICAL EVALUATION

The integration of the robotic architecture with the planner, along with all of
its attendant extensions, was evaluated via experimental runs in the USAR
task scenario introduced earlier. The task at hand is the following: the robot
is required to deliver essential supplies (which it is carrying) to the end of a
long hallway; this is a hard goal. The hallway has doorways leading off into
rooms on either side, a fact that is unknown to the robot initially. When the
robot encounters a doorway, it must weigh (via the planner) the action costs
and goal deadline (on the hard delivery goal) in deciding whether to pursue a
search through the doorway.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:17

Fig. 5. A Pioneer P3-AT on which the planner integration was verified.

In the specific runs described here, green boxes act as stand-ins for victims,
whereas blue boxes denote healthy people (whose locations need not be re-
ported). The experimental setup consisted of three rooms, which we represent
as R1, R2 and R3. The room R1 contained a green box (GB), representing a
victim; R2 contained a blue box (BB), representing a healthy person; and R3 did
not contain a box.8 The respective doorways leading into the three rooms R1

through R3 are encountered in order as the robot traverses from the beginning
of the hallway to its end.

The aim of these experimental runs was to demonstrate the importance of
each of the planning components that make up this integrated system, and to
showcase the tight integration that was achieved in order to control the robot in
this scenario. To achieve these goals, we conducted a set of experiments where
we varied four parameters, each of which could take on one of two values,
thus giving us 16 different experimental conditions through the scenario. The
factors that we varied were:

(1) Hard Goal Deadline. The hard goal deadline was fixed at 100 time units,
resulting in the runs in Table I, and 200 time units to give the runs in
Table II.

(2) Cost. Presence or absence of action costs to demonstrate the inhibiting
effect of costly sensing actions on the robot’s search for injured people.

(3) Reward. Presence or absence of a reward for reporting injured people in
rooms.

(4) Goal Satisfaction. Label the goal of reporting injured people as either soft
or hard, thus modulating the bonus nature of such goals.

In the tables provided, a + symbol stands for the presence of a certain feature,
while a - denotes its absence. For example, run number 5 from Table I denotes

8Although distinguishing injured humans from healthy ones in noisy environments is an interest-
ing and challenging problem, it is not directly relevant to the core of the work being presented and
evaluated.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:18 • K. Talamadupula et al.

Table I. Results of Trial Runs with a Deadline of 100 time units

Run Cost Reward Soft Enter R1 Report GB Enter R2 Report BB Enter R3

1 + + + Yes Yes No No No
2 + + - Yes Yes ⊥ ⊥ ⊥
3 + - + No No No No No
4 + - - Yes Yes ⊥ ⊥ ⊥
5 - + + Yes Yes No No No
6 - + - Yes Yes ⊥ ⊥ ⊥
7 - - + No No No No No
8 - - - Yes Yes ⊥ ⊥ ⊥

⊥ denotes that there is no feasible plan from that point on that fulfils all hard goals.

an instance where the deadline on the hard goal (going to the end of the hallway)
was 100 time units, action costs were absent, the open world goal of reporting
people carried reward, and this goal was classified as soft.

The experimental runs detailed in this section were obtained on a Pioneer
P3-AT robot (see Figure 5) as it navigated the USAR scenario with the initial
hard goal of getting to the end of the hallway, while trying to accrue the maxi-
mum net benefit possible from the additional soft goal of reporting the location
of injured people. A video of the robot performing these tasks can be viewed via
the following link:
http://hri.cogs.indiana.edu/videos/USAR.avi

The robot starts at the beginning of the hallway, and initially has a plan for
getting to the end in fulfilment of the original hard goal. An update is sent to
the planner whenever a doorway is discovered, and the planner subsequently
replans to determine whether to enter that doorway. In the first set of runs,
with a deadline of 100 units on being at the end of the hallway, the robot has
time to enter only the first room, R1 (before it must rush to the end of the
hallway in order to make the deadline on the hard goal).

Even with this restriction, some interesting plans are generated. The plan-
ner directs the robot to enter R1 in all the runs except 3 and 7. This can be
attributed to the fact that there is no reward on reporting injured people in
those cases, and the reporting goal is soft; hence the planner does not consider
it worthwhile to enter the room and simply ignores the goal on reporting. The
alert reader may ask why it is not the case that entering R1 is skipped in runs
4 and 8 as well, since there is no reward on reporting injured people in those
cases either; however, it must be noted that this goal is hard in cases 4 and 8,
and hence the planner must plan to achieve it (even though there may be no
injured person in that room, or reward to offset the action cost). This example
illustrates the complex interaction between the various facets of this scenario
(deadlines, costs, rewards, and goal satisfaction), and shows how the absence
of even one of these factors may result in the robot being unable to plan for
opportunities that arise during execution, in this case, detecting and reporting
injured people.

When the deadline on reaching the end of the hallway is extended to 200
units, the robot is afforded enough time to enter all the rooms. In such a
scenario, it is expected that the robot would enter all the rooms to check for
victims, and this is indeed what transpires, except in runs 11 and 15. In those

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:19

Table II. Results of Trial Runs with a Deadline of 200 time units

Run Cost Reward Soft Enter R1 Report GB Enter R2 Report BB Enter R3

9 + + + Yes Yes Yes No Yes
10 + + - Yes Yes Yes No Yes
11 + - + No No No No No
12 + - - Yes Yes Yes No Yes
13 - + + Yes Yes Yes No Yes
14 - + - Yes Yes Yes No Yes
15 - - + No No No No No
16 - - - Yes Yes Yes No Yes

runs, the robot skips all rooms for precisely the same reasons outlined before
(for runs 3 and 7): the lack of reward for reporting the goal, combined with the
softness of that goal. Indeed, runs 3 and 7 are respectively identical to runs 11
and 15 save the longer deadline on the hard goal.

Another interesting observation is that in all the cases where the robot does
enter R2, it refuses to report the blue box (BB), since there is no reward attached
to reporting blue boxes (nonvictims). Since the deadline is far enough away for
runs 9 through 16, the planner never fails to generate a plan to enter rooms in
order to look for injured people, avoiding the situation encountered in runs 2,
4, 6, and 8 where there is no feasible plan that fulfils all hard goals since the
robot has run out of time (denoted ⊥ in Table I).

In terms of computational performance, the planning time taken by the
planning system was typically less than one second (on the order of a hun-
dred milliseconds). Our empirical experience thus suggests that the planning
process always ends in a specific, predictable time frame in this scenario (an
important property when actions have temporal durations and goals have dead-
lines). Additionally, in order to test the scale-up of the system, we evaluated it
on a problem instance with ten doors (and consequently more runtime objects)
and found that there was no significant impact on the performance.

These runs thus confirm the importance of the three main components of the
planning system that directs the robot in this USAR scenario—without replan-
ning, the system would not be able to take new information about doorways
and rooms connected to them into account; without support for soft goals, the
planner may fail to return a plan given an overconstrained problem; and with-
out an open world representation, the planner would be unable to reason about
new objects (doorways, rooms, injured persons) that result in the fulfilment of
new goals.

6. RELATED WORK

In this article, we focused on planning support for robots where human-robot
teams work in tandem to solve complex problems in open world scenarios.
Although there has not been any prior work that directly addresses planning
for human-robot teaming in open worlds, there does exist a rich body of work
that is related to various aspects of our overall problem. As shown in Figure 6,
this related work can be classified into three parts: human-robot interaction,
human-planner interaction, and planner-robot interaction. Specifically:

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:20 • K. Talamadupula et al.

Fig. 6. The various modes of interaction in human-robot scenarios.

—planning and execution monitoring deals with the interactions between a
fully autonomous robot and a planner;

—Human-Robot Interaction (HRI) works toward smooth interactions between
a human user and a robot;

—mixed initiative planning relates to interactions between humans who are
receiving plans and the automated planners that generate them.

Since our focus is on how a planner fits into human-robot teams, we are most
interested in work that relates to planning and execution monitoring and mixed
initiative planning. There has been significant work in planning and execution
monitoring, often in the context of replanning and contingent planning. Contin-
gent planners (refer to Albore et al. [2009] and Meuleau and Smith [2003]) can
be viewed as solving for the problem of execution monitoring by assuming full
sensing knowledge is available at execution time, so no replanning would ever
be necessary. However, as Gat [1992] has pointed out, in designing a planner
whose ultimate goal is finding plans for execution, it is difficult (and sometimes
impossible) to model for all contingencies, and often it is better to design an
execution monitoring system that is capable of recognizing failures (i.e., cog-
nizant failures [Firby 1989]). That is, we can relax the problem for the planner
by removing uncertainty in the world. Agre and Chapman [1990] also discuss
these issues in relationship to planning and execution monitoring and viewing
“plans as advice.”

A number of systems (refer to [Lemai and Ingrand 2003], [Knight et al.
2001], [Myers 1998]) have worked by performing execution monitoring and
subsequent plan repair or replanning upon the discovery of an inconsistent ex-
ecution state. For instance, the CASPER planner [Knight et al. 2001] performs
plan repair upon failure. While the IxTeT-eXeC [Lemai and Ingrand 2003] sys-
tem attempts a similar repair strategy, it replans only if no repair can be found.
It handles the arrival of new goals through replanning.

The work that is most closely related to our system, however, seems to be
Bagchi et al.’s [1996] system for controlling service robots. The emphasis of their
work is on the robotic agent’s capability to not only plan and act autonomously,
but also to do so in an interactive way such that the user’s comfort and safety
are kept in mind. In order to achieve this, the robot is equipped to comprehend

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:21

the user’s (changing) goals and advice at different levels of detail. In turn, the
planner can refine and modify these goals dynamically and react to unexpected
changes in the environment. This system thus includes the human user in the
loop via interaction with the robot and a probabilistic planner.

However, one critical area where the action selection mechanism employed
by Bagchi et al. will fail is when sensing and/or sensing actions are expensive.
Sensing is critical to real-world applications, since most scenarios involve par-
tial knowledge of the world state and the system needs a mechanism to update
itself of changes and new information in the world. Our system handles this
problem by closing the loop shown in Figure 6: the planner interacts with the
robot using the ADE architecture and the SapaReplan execution monitor, while
simultaneously providing the human user a way of interacting with it via the
specification of new information and goals through OWQGs.

Handling an open environment using a closed world planner has been con-
sidered before, notably in the work of Etzioni et al. [1997] via the specification
of Local Closed-World (LCW) statements. However, there exists at least one
major difference between their work and this attempt. We note that the repre-
sentation used in that work, of closing a world that is open otherwise via the
LCW statements, is complementary to our representation. Since our interest in
providing support for open world quantified goals is to relax our planner’s as-
sumption of a world closed with respect to object creation, we are opening parts
of a completely closed-world with the aid of OWQGs. This approach provides a
method of specifying conditional goals, where goal existence hinges upon the
truth value of facts.

Semantics of goals involving sensing have received attention in Scherl and
Levesque [1993] and Golden and Weld [1996]. The latter work is particularly
relevant as they consider representations that leads to tractable planning, and
propose three annotations initially, hands-off and satisfy to specify
goals involving sensing. A conditional goal A � B will translate, in their no-
tation, to initially(A) ⇒ satisfy(B). Conditional goals require sensing the
antecedent’s truth in the initial state to decide whether to pursue the reward
offered by the consequent. In this sense, they are inherently temporal (a point
noted also by Golden and Weld [1996]). There has been significant work on
“temporal goals” [Bacchus and Kabanza 1996; Baral et al. 2001], and “trajec-
tory constraints” [Gerevini et al. 2009].

An important difference, however, is that earlier work focused on problems
with completely known initial states (where, as we saw in Section 3.1, these
richer goals can be compiled down to goals of achievement). Our interest is
on handing conditional goals with incomplete information about initial states
(as is the norm in open world scenarios we deal with). Here, conditional goals
present interesting trade-offs between goal rewards and sensing costs.

On the “planners interacting with humans” side, there have been some plan-
ning systems that work toward accepting input from users. In particular, work
by Myers [1996] has dealt specifically with advisable planning (i.e., allowing
a human to specify partial plans, recommendations of goals and actions, or
methods to evaluate plan quality; all in natural language). The Continuous

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:22 • K. Talamadupula et al.

Planning and Execution framework, also developed by Myers [1998], con-
tained such a framework allowing natural language advice. This system pro-
vided for plan execution monitoring and initiated plan repairs when necessary
(though appears to have never handled fully open world scenarios). Another
system that relies on high-level advice from a human is TRAINS-95 [Fergu-
son et al. 1996]. This system engages the human in a dialog, explicitly elic-
iting advice from the user and asking for the best way to complete tasks at
the high level, while the planner engages in planning using more primitive
actions.

7. CONCLUSION

In this article, we focused on the challenges of adapting planning technology
to applications involving human-robot teaming. Our motivating problem is an
Urban Search And Rescue (USAR) scenario where a human is in remote contact
with an autonomous robot and provides high-level instructions to it. We noted
that several aspects of state-of-the-art planning technology, such as temporal
planning and partial satisfaction planning, can be imported out-of-the-box; in
particular we use SapaReplan as the base planner. We then showed that the
teaming problem also presents a critical challenge, namely the need to handle
open worlds. Given that existing planners operate under closed world assump-
tions, we had to focus on effective ways of enabling them to handle open world
requirements. Of particular interest in the USAR scenario is the fact that the
most important goals (reporting on wounded people) are “conditional”, in that
the planner and the robot do not know where the injured people are. To cap-
ture this, we investigated the general notion of conditional goals, and showed
how they foreground the trade-offs between goal reward and sensing cost. We
then developed an approach to handle a specific form of conditional goals called
open world quantified goals. We discussed the details of integrating the plan-
ner and robot, and presented an empirical evaluation of the effectiveness of our
solution.

A fruitful line of extension for this work is to handle open world quanti-
fied goals more generally (refer to Section 3.1) without the optimistic sensing
assumption. We believe that sampling-based planning techniques such as hind-
sight optimization [Yoon et al. 2008] and anticipatory planning [Hubbe et al.
2008] would be useful in better balancing sensing costs with expected reward.
We are also considering methods of performing domain analysis to determine
what objects should be attended to by the DIARC architecture before plan
execution begins.

Finally, although we focused only on conditional goals, open worlds also
present challenges involving counterfactual knowledge. For example, whereas
a statement such as “a door implies a room” can be evaluated and used at “plan
time” in classical planning scenarios, in open worlds, where the full map may
not be known, the existence of a door can only be sensed during execution. Any
use of this knowledge during planning will make the plan “speculative” in that
its robustness is subject to the outcomes of sensing during execution. It would
thus be worthwhile to develop both representations and planning methods

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

Planning for Human-Robot Teaming in Open Worlds • 14:23

for handling such counterfactual domain knowledge. OWQGs already provide
rudimentary representation support.

Indeed, as we mention at the end of Section 3.2, “If G is empty, that is, there
is no new goal to work on, the OWQG Q can be seen simply as additional knowl-
edge that might help in reasoning about other goals.” Such goalless OWQGs
can be seen as sensing-based domain axioms, in that they allow the planner
to deduce more world facts based on sensing results. The presence of such
knowledge at planning time allows the planner to make counterfactual plans
whose success is predicated on specific sensing results. A naive planner might
consider such counterfactual plans to be on par with normal ones, and pick the
least expensive. The problem with this approach is that the least expensive
plan may be “wishful” in that it is predicated on sensing results that are un-
likely. Generating robust plans in such scenarios is a challenge that we hope to
address in future work.

ACKNOWLEDGMENTS

We thank W. Cushing for helpful discussions and the development of SapaRe-
plan, and the TIST reviewers for valuable suggestions on the organization of
the article.

REFERENCES

AGRE, P. AND CHAPMAN, D. 1990. What are plans for? Robot. Auton. Syst. 6, 1-2, 17–34.
ALBORE, A., PALACIOS , H., AND GEFFNER, H. 2009. A translation-based approach to contingent

planning. In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 09). 1623–1628.

BACCHUS, F. AND KABANZA, F. 1996. Planning for temporally extended goals. In Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 2. 1215–1222.

BAGCHI, S., BISWAS, G., AND KAWAMURA, K. 1996. Interactive task planning under uncertainty and
goal changes. Robot. Auton. Syst. 18, 1, 157–167.

BARAL, C., KREINOVICH, V., AND TREJO, R. 2001. Computational complexity of planning with tempo-
ral goals. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’01).
509–514.

BENTON, J., DO, M., AND KAMBHAMPATI , S. 2009. Anytime heuristic search for partial satisfaction
planning. Artif. Intell. 173, 5-6, 562–592.

BRICK, T. AND SCHEUTZ, M. 2007. Incremental natural language processing for HRI. In
Proceedings of the 2nd ACM IEEE International Conference on Human-Robot Interaction.
263–270.

CANTRELL, R., SCHEUTZ, M., SCHERMERHORN, P., AND WU, X. 2010. Robust spoken instruction un-
derstanding for HRI. In Proceedings of the Human-Robot Interaction Conference.

CUSHING, W., BENTON, J., AND KAMBHAMPATI, S. 2008. Replanning as deliberative re-selection of
objectives. Tech. rep., CSE Department, Arizona State University.

DO, M. AND KAMBHAMPATI, S. 2002. Planning graph-based heuristics for cost-sensitive tempo-
ral planning. In Proceedings of the International Conference on Artificial Intelligence Planning
Systems (AIPS’02). Vol. 2.

DZIFCAK, J., SCHEUTZ, M., BARAL, C., AND SCHERMERHORN, P. 2009. What to do and how to do it:
Translating natural language directives into temporal and dynamic logic representation for goal
management and action execution. In Proceedings of the International Conference on Robotics
and Automation.

ETZIONI, O., GOLDEN, K., AND WELD, D. S. 1997. Sound and efficient closed-world reasoning for
planning. Artif. Intell. 89, 1-2, 113–148.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

14:24 • K. Talamadupula et al.

FERGUSON, G., ALLEN, J., AND MILLER, B. 1996. TRAINS-95: Towards a mixed-initiative planning
assistant. In Proceedings of the 3rd Conference on Artificial Intelligence Planning Systems (AIPS-
96). 70–77.

FIRBY, R. 1989. Adaptive execution in complex dynamic worlds. Tech. rep., Yale University, New
Haven, CT.

GAT, E. 1992. Integrating planning and reacting in a heterogeneous asynchronous architecture
for controlling real-world mobile robots. In Proceedings of the National Conference on Artificial
Intelligence. 809–809.

GEREVINI, A., HASLUM, P., LONG, D., SAETTI, A., AND DIMOPOULOS, Y. 2009. Deterministic planning in
the fifth international planning competition: Pddl3 and experimental evaluation of the planners.
Artif. Intell. 173, 5-6, 619–668.

GOLDEN, K. AND WELD, D. S. 1996. Representing sensing actions: The middle ground revisited.
In Proceedings of the International Conference on Principles of Knowledge Representation and
Reasoning (KR’96). 174–185.

HUBBE, A., RUML, W., YOON, S., BENTON, J., AND DO, M. 2008. Online anticipatory planning. In
Proceedings of the ICAPS’08 Workshop on a Reality Check for Planning and Scheduling under
Uncertainty.

KAMBHAMPATI, S. 2007. Model-Lite planning for the Web age masses: The challenges of planning
with incomplete and evolving domain theories. In Proceedings of the AAAI ’07 Conference on
Artificial Intelligence.

KNIGHT, R., RABIDEAU, G., CHIEN, S., ENGELHARDT, B., AND SHERWOOD, R. 2001. Casper: Space explo-
ration through continuous planning. IEEE Intell. Syst., 70–75.

LEMAI, S. AND INGRAND, F. 2003. Interleaving temporal planning and execution: IxTeT-eXeC. In
Proceedings of the ICAPS Workshop on Plan Execution.

MEULEAU, N. AND SMITH, D. 2003. Optimal limited contingency planning. In Proceedings of the
19th Conference on Uncertainty in Artificial Intelligence.

MYERS, K. 1996. Advisable planning systems. Adv. Plan. Technol., 206–209.
MYERS, K. 1998. Towards a framework for continuous planning and execution. In Proceedings of

the AAAI Fall Symposium on Distributed Continual Planning.
SCHERL, R. B. AND LEVESQUE, H. J. 1993. The frame problem and knowledge-producing actions.

In Proceedings of the AAAI Conference on Artificial Intelligence. 689–695.
SCHERMERHORN, P., BENTON, J., SCHEUTZ, M., TALAMADUPULA, K., AND KAMBHAMPATI, S. 2009. Finding

and exploiting goal opportunities in real-time during plan execution. In IEEE/RSJ International
Conference on Intelligent Robots and Systems.

SCHEUTZ, M. 2006. ADE - Steps towards a distributed development and runtime environment
for complex robotic agent architectures. Appl. Artif. Intell. 20, 4-5, 275–304.

SCHEUTZ, M., SCHERMERHORN, P., KRAMER, J., AND ANDERSON, D. 2007. First steps toward natural
human-like HRI. Auton. Robot. 22, 4, 411–423.

TALAMADUPULA, K., BENTON, J., SCHERMERHORN, P., SCHEUTZ, M., AND KAMBHAMPATI, S. 2010. Inte-
grating a closed-world planner with an open-world robot. In Proceedings of the AAAI Conference
on Artificial Intelligence.

YOON, S., FERN, A., AND GIVAN, R. 2007. FF-Replan: A baseline for probabilistic planning. In Pro-
ceedings of the International Conference on Autonomous Planning and Scheduling (ICAPS’07).
352–359.

YOON, S., FERN, A., GIVAN, R., AND KAMBHAMPATI, S. 2008. Probabilistic planning via determiniza-
tion in hindsight. In Proceedings of the AAAI Conference on Artificial Intelligence.

Received April 2010; revised June 2010; accepted June 2010

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 2, Article 14, Pub. date: November 2010.

